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Abstract
Visual information plays a very important role in interacting with the real world. In the

field of computer science, image processing algorithms inspired by human visual infor-

mation systems have been widely studied. Traditional research topics include optical

flow algorithms, which extract a motion vector between images using brightness con-

stancy assumptions, and Histogram of Gradient (HOG) algorithms that detect objects

by learning the boundary values of pixels. State-of-the-art, deep learning techniques in

artificial intelligence research mimic neural structures in the human brain, and are an

area of active development. However, small computers such as Micro Controller Unit

(MCU) and Internet of Things (IOT) devices in industry create computational time

restrictions to utilizing the state-of-the-art techniques.

In this dissertation, a light-weight object detection algorithm is designed to perform

efficiently, even in situations where computer performance is limited. It reduces the

computational load and increase the object detection performance by combining the

existing traditional techniques and the latest techniques. Rather than using the entire

state-of-the-art deep learning model, optical flow vectors are calculated to estimate

moving objects in the beginning of the detection process. Then, in the last phase of the

algorithm, machine learning and neural network models including deep learning are

applied to extract image features for object classification.

The proposed method begins by introducing proposed feature point reset function,

moving window and target estimator function based on the Lucas-Kanade method for

sparse optical flow estimation. These functions improve performance when tracking

moving objects and reduce computational time greatly. Next, it classifies the moving

objects in the area extracted from the proposed optical-flow-based algorithm. When

applying learning-based classification models, training data is a very important factor

for the performance of the learning models. Training data relationships and confirmed

coverage effects are determined among datasets by performing experiments to evaluate

test datasets. In the end, a HOG+SVM machine learning model, You-Only-Look-Once

version 5 (YOLOv5), and simple CNN-based Small Person Detection (SPD) deep

learning models are used to classify the moving objects with the optical-flow-based al-

gorithm. A learning-based classification model is applied to the object-existing Region

of Interest (ROI) which is extracted from the optical-flow-based model. The optimal

parameters are found by adjusting the crop size and resize ratio parameters according to

the size of the ROI. Proposed CNN-based deep learning model SPD is operated on the

x



proposed separated ROI method which is pre-process step. ROI is separated according

to threshold of aspect ratio from the experiment analysis. Object detection performance

such as FPS, recall, and precision are compared for the machine learning technique the

HOG+SVM, HOG Multi-scale, OF+HOG+SVM, YOLOv5n, OF+YOLOv5n models,

and the proposed deep learning technique OF+SPD model. The comparison results

shows better performance in computational speed and object detection performance

for proposed detection algorithm.

This work presents a pedestrian detection algorithm having high computational speed

through sparse optical flow and a lightweight CNN-based neural network model. First,

it employs an object localization function with a moving window detector, which mit-

igates the flaws of the sparse optical flow. Next, an SPD neural network model con-

sisting of fewer CNN layers performs object classification. A performance comparison

evaluation experiment of the proposed method was conducted upon a CPU device,

which showed good detection performance and faster computation speed compared to

existing object detection algorithms. This indicates that the proposed pedestrian de-

tection algorithm could be applied using only a CPU device without the need for an

expensive GPU device. The proposed algorithm can serve as an economic and efficient

algorithm for real-time pedestrian detection in industrial areas where low-performance

computing devices need to be used.

Key words : moving object tracking, optical flow, moving window, target estima-
tor, object detection, cross test, influence graph, deep learning, ob-
ject classification, pedestrian detection, machine learning, neural net-
work, lightweight algorithm

xi



Chapter 1

Introduction

In recent years, there has been increased interest in developing and applying object

detection systems using optical flow and deep learning (Cheng and Han, 2016; Liu

et al., 2020; Prasad, 2012; Zhao et al., 2019; Zou et al., 2019). Moving object tracking

and detection methods are applied to wide research fields including surveillance sys-

tems, traffic monitoring systems and recognition of workers and pedestrians (Aslani

and Mahdavi-Nasab, 2013). Object detection is the study of how to implement and

automate the tasks that human visual systems can do in the field of computer vision.

In this research field, image or video data is collected, processed, and analyzed, and

various topics in each process are being studied.

For example, there is software in vehicles that analyzes whether there are other vehi-

cles or people around the vehicle by receiving and processing images taken around the

vehicle. From the analysis, it is possible to obtain location and motion information of

surrounding objects for preventing collisions. The latest object detection models adopt

a deep neural network structure, and various application cases arising nowadays with

the development of new technology. Despite the development of object detection mod-

els and their wide application cases, various issues still exist. In this vein, it is discussed

why this paper proposes a computationally efficient object detection algorithm.

1.1 Why efficient pedestrian detection?

It is important to track and detect moving objects in many applications, such as surveil-

lance cameras and unmanned vehicle cameras, to track workers in factory environ-

1



Chapter 1. Introduction

ments to ensure personnel safety and to recognize pedestrians. Conventional algo-

rithms to track and detect moving objects include frame difference algorithms, back-

ground subtraction algorithms, optical-flow-based algorithms, and learning-based al-

gorithms. Deep learning-based algorithms are computationally complex, require suffi-

cient training samples, and are not suitable for real-time processing on a board without

graphical processing units (GPUs). In addition, conventional moving-object detection

and tracking algorithms cannot effectively detect and track targets obscured by obsta-

cles within the images or when an image is distorted by camera vibrations.

In the industrial area, there are cheap, low-computing power CPU devices, and various

uses of devices in vibration-prone environments, with distortion-prone camera frames.

One particularly desires a robust, time and financial cost-effective algorithm in indus-

trial fields where various variables exist. Moving objects are targeted for surveillance

systems of traffic flow, detecting pedestrians, and workers in industrial fields. There-

fore, it requires the algorithms for moving object tracking and classifying whether a

tracked object is a person or not, with improved computational speed and detection per-

formance required to the industry. When using a classification model, it is important to

learn features such as the distortion of fish-eye camera images used for capturing wide

areas in industry.

1.2 Motivation and objective

To address this problem, this paper proposes a moving object tracking and detection

algorithm that can be applied to various applications. The proposed algorithm can ef-

ficiently eliminate the noise from camera vibration in the image frames and perform

continuous tracking for moving objects obscured by obstacles. Specifically, the con-

ventional sparse optical flow algorithm (Lucas-Kanade, LK) is enhanced to detect and

track multiple moving objects at a low computational cost. Moreover, the corner extrac-

tion algorithm (Shi–Tomasi) is used to track feature points to detect and track moving

targets. A moving window detector and memorized estimator are used to enhance the

detection performance, ensure the robustness of the algorithm to noise, and improve

the worker safety. In particular, the moving window detector uses the window memory

at each feature point as the window size and detects and tracks the moving target by

evaluating whether the feature point is noise or a moving object. The location history

of the detected points is memorized, and a halted or invisible target is identified from

2



1.3. Organization of dissertation

the location history of the feature points. Subsequently, the estimator decides whether

the target state is maintained.

It needs to classify moving objects in the ROI extracted from the proposed optical flow

method. Before applying learning-based classification models, the effects of the differ-

ent types of training dataset is studied. Recently, there have been many complex and

diverse structures and high-performance deep learning models. These models require

a large amount of learning data and learning time. As mentioned above, instead of

studying the structure of the model, techniques such as the amount of efficient learning

data, learning epochs, and transfer learning are being studied as elements outside the

model (Zhu et al., 2012). From this point of view, distorted image datasets are used

to examine characteristics with relationship among the datasets. Using the proposed

strategy, the performance of model could be increased by changing only the learning

data composition.

After studying on the effects of the training data, a zoom and classification function are

developed, even in the region of features which are hardly trained, including faraway

and small objects. It do not only reduce computational cost, but also develop perfor-

mance or additional functionality. Hard cases in the data selection experiments can be

solved with proposed optical flow method and machine learning classifier such as the

HOG+SVM or YOLOv5 models. ROI extracted from the optical flow object track-

ing method will be zoomed in various ratios like 0.7 or 1.7, according to the tracked

ROI size. This adaptive resizing method will be helpful to keep object features in the

frame when using object classification models. Various experiments are conducted to

examine the optimal crop and resize parameters, and which classification models are

effective. The objective is to find a model with an efficiently reduced computational

cost and improved detection performance by finding the optimal parameters.

1.3 Organization of dissertation

The organization of this dissertation is as follows. Chapter 2 describes the background

for this research, including various object detection applications of optical flow, ma-

chine learning, and deep learning methods. Chapter 3 introduces an algorithm to detect

and track the moving object using sparse optical flow and other developed functions.

Chapter 4 provides an efficient strategy for selecting training datasets, in which the ob-

ject detection performance is maintained. Chapter 5 explains the overall process of pro-
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posed optical flow and machine learning method, which detects and classifies objects

with lower computational cost and better performance compared with other traditional

methods. Finally, Chapter 6 presents a summary of the whole dissertation, conclusions

from the results, and discussions of potential future work improving proposed method.
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Chapter 2

Background

In recent times, object detection has been extensively researched (Zou et al., 2019).

The difficulties and challenges in object detection problems must be considered, in-

cluding issues such as improving the speed of the detection model so that it can be

used in real-time applications, various rotation angles and sizes of objects, dense and

occluded object classification, and object position estimation. In other computer vision

problems, there are also issues regarding images under varying camera views, illumi-

nations, distorted camera lenses, and noise-filled environments.

Object detection suffers from restrictions depending on the detection target, operating

environment, and purpose. The detection model could be operated in a surveillance

system that monitors traffic flow, pedestrians, and workers in industrial sites. In this

case, an optical flow method for extracting pixel motion information between consecu-

tive frames may be advantageously applied. While considering the background, various

types of optical flow methods and advanced techniques will be examined, and limita-

tions and improvements will be analyzed. First, I consider tracking the moving object

and classifying it through a learning-based model. The learning-based object detection

model is particularly influenced by the features of the learned image. Accordingly, it

is necessary to examine the types and characteristics of conventional training datasets

as well as studies that improve the performance of the model by applying data.

To solve object detection problems that cannot be solved through an efficient learning

dataset strategy, optical flow and a learning-based detection model can be combined.

For this, various machine learning and deep learning models will be examined, in-

cluding each of their characteristics, limitations, and improvements. Based on these
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examinations, an improved object detection model can be designed by combining an

optical flow method and a learning-based classification model, enabling to reduce the

computational cost of the deep learning model and mitigate the window detector size

problem of machine learning. Finally, such an approach can be robust even in distorted

datasets, reduce the amount of computation consumed by object localization and clas-

sification, and detect moving objects regardless of size.

2.1 Moving object tracking

In recent years, methods to track and detect moving objects have been widely studied.

Before the development of learning-based algorithms, methods based on the optical

flow, frame difference, and background subtraction were typically used. Moving-object

tracking algorithms such as dense optical flow, frame difference, and background sub-

traction are used to determine the movement of objects and were successful in accu-

rately detecting objects. However, these algorithms involve substantial computational

time cost. Existing moving-object tracking algorithms suffer from limitations with re-

gard to computational time and can only work in limited environments.

2.1.1 Optical flow-based model

Optical flow is the pattern of motion in the image, represented by the direction and

distance distribution of pixels between the previous frame and the next frame (Horn

and Schunck, 1981). It assumes that the pixel intensity of an object moving between

consecutive frames remains unchanged and that neighbouring pixels have similar mo-

tion. It is a crucial consideration in moving-object tracking because optical flow allows

to determine how much the object moves in the image and in which direction.

There are two ways to calculate optical flow: sparse optical flow, which calculates

only a few pixels, and dense optical flow, which calculates the entire image’s pixels.

The Gunnar–Farneback algorithm is a representative moving-object tracking algorithm

among dense optical flow methods (Farnebäck, 2003). It calculates the optical flow

using all pixels of the image, so there is no need for a separate feature point to track.

However, it has the disadvantage that the speed is low because the optical flow vector

is calculated using all pixels.

A representative example of the sparse optical flow method is Lucas–Kanade algorithm
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(a) (b)

(c) (d)

Figure 2.1: Samples of representative optical flow methods (modified from (Horn and

Schunck, 1981; Farnebäck, 2003; Bouguet et al., 2001)). (a): Input image. (b): Horn-

Schunck method. (c): Farneback. (d): Lucas-Kanade.

(Bouguet et al., 2001). In this algorithm, the motion vector is computed using a small

3×3 window patch, under the assumption that neighbouring pixels move similarly. Un-

like the dense optical flow method, the Lucas–Kanade algorithm calculates an optical

flow vector by utilizing only feature points in an image. The optical flow vector is cal-

culated by utilizing feature points such as corner points, which has the advantage that

the processing speed is very high compared to using all pixels. It focuses on speeding

up the processing of moving-object tracking algorithms so that they can operate seam-

lessly even on low-performance equipment. Therefore, I intend to develop and propose

an object tracking algorithm based on such a sparse optical flow method.

Various optical flow techniques for moving-object detection have been proposed. Movi-

ng-object tracking was realized using optical flow and motion vector estimation (Agar-

wal et al., 2016; Kale et al., 2015; Aslani and Mahdavi-Nasab, 2013), and the approach

was noted to exhibit a strong object tracking ability for the same scene in various views.

To perform real-time object detection and tracking, feature extraction was conducted
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using the pyramid LK optical flow, as a sparse optical flow technique (Wang and Yang,

2018). To enhance the tracking accuracy, the corners were detected for tracking, the

sub-pixel corners were determined, the video in each frame of the image layered in

the image pyramid was examined to calculate the optical flow at the top corner, and

the next pyramid was considered the starting point of the pyramid. This process was

repeated until the bottom pyramid image. Notably, object recognition can be supple-

mented in a moving camera situation with technological advancements.

Certain researchers attempted to perform object recognition using the optical flow

based on a camera attached to a moving vehicle (Kim and Kwon, 2016). Several move-

ments were captured within the scene, and the ego motion was separated from the

background. However, when the scene moved instead of a fixed camera, many false

positives occurred. The authors attempted to relax the stationary cameras restriction

by using traditional moving-object detection methods and introducing additional steps

before and after the detection. For cameras to be attached to heavy equipment, a fish-

eye camera with a wide-angle range can be used. Certain researchers developed an

approach to track pedestrians and cars in fisheye images (Bertozzi et al., 2015), using

low-cost sensors and four fisheye cameras with a wide range. Unwarping technique is

used to pre-process distorted images, followed by object classification and tracking.

A novel equipment design and sensing system (Safety 360) was developed to provide

equipment operators with a surround-view (Teizer, 2015a). However, there is a prob-

lem that the background subtraction is needed, to create an algorithm that works better

by combining optical flow with cameras in various situations. The following section

introduces and limits to the background subtraction algorithms used in combination

with optical flow.

2.1.2 Background subtraction problem

There is a fatal flaw in the object tracking model based on optical flow. In the pre-

vious survey, it is difficult to extract optical flow vectors for a desired target in im-

ages acquired from cameras that are ego-motioned, such as cameras attached to mov-

ing vehicles. To overcome this issue, there are various background subtraction meth-

ods (BSM) that distinguish moving backgrounds from foregrounds (Piccardi, 2004;

Brutzer et al., 2011; Garcia-Garcia et al., 2020; Sobral and Vacavant, 2014). Figure 2.2

shows sample images of the results after applying background substitution methods

(KaewTraKulPong and Bowden, 2002). Approaches based on frame difference, opti-
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(a) (b)

(c) (d)

Figure 2.2: Sample images of applying background substitution method (modified from

(Garcia-Garcia et al., 2020)).

cal flow, machine learning, and deep learning techniques are being studied in BSM.

These techniques further use filters such as Gaussian averaging, temporary median fil-

ter, mixture of gaussians, kernel density estimation (KDE), sequential KD application,

co-occurrence of image variations, and linear and statistical computations. The back-

ground subtraction technique should be appropriately selected based on how to limit

the target object to be extracted from the background motion depending on various

average processing and filter processing techniques and the computational speed of the

computer.

Object detection performance for a complex background can be enhanced using the

optical flow. Object detection may not be effective when the frame difference technique

is integrated with the optical flow technique. Certain researchers developed algorithms

to perform background modeling tasks, using edge detection to solve problems (Chen
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et al., 2016). Another study attempted to solve the background subtraction problem in

a moving camera environment based on optical flow (Diamantas and Alexis, 2018).

The corresponding approach obtains motion information of the camera from a sensor

inside the camera. After examining the correlation between camera motion information

and optical flow parameters, it is possible to select optical flow vector information for

the desired target object from the moving background from the multi-linear regression

model. In this approach, parameters are optimised for the root environment where city

buses roam.

Another study aimed at object segmentation based on the dense optical flow (Kush-

waha et al., 2020; Chan, 2013). Segmentation problems based on optical flow involve

the task of distinguishing them from moving objects more precisely in a moving back-

ground. Accordingly, this approach labelled each pixel to distinguish between fore-

ground and background, and set the threshold to the magnitude of the motion flow

vector to define moving pixels. The proposed technique calculates the homography

matrix, stabilizes the camera motion, and performs statistical background extraction

modeling based on the single Gaussian background modeling approach. By utiliz-

ing the dense optical flow vector, precise background subtraction can be performed

by comparing the change in motion vector magnitude for all pixels between previous

frames. However, as such a dense optical flow involves operations on all pixels of the

image, it is computation-intensive.

2.1.3 Application of moving object tracking

Moving-object detection techniques can also be applied for safety evaluations. Certain

researchers used computer vision technologies to measure the vibration of buildings

(Chou and Chang, 2021). This approach could help evaluate the condition of the build-

ing, and minute movements of the building were detected using several sensors. The

efficiency of the existing motion extraction methods was compared, using commer-

cialized cameras and the LK optical flow instruments as experimental equipment. In

general, when heavy equipment is operated and large vibrations and physical forces are

applied to the ground at construction sites, shaking occurs throughout the structure. Af-

ter pre-processing the image, this shaking can be monitored through monocular vision

and detection of the obstacle around which the shaking occurs (Son et al., 2017).

Object tracking algorithms have also been applied for ensuring personnel safety dur-

ing the operation of heavy equipment such as unmanned excavators (Rasul et al., 2021;
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Leger et al., 1999; Son et al., 2019). Motion detection and object tracking were per-

formed using Velodyne VLP-16 light detection and ranging sensors. Moreover, motion

predictions could be performed by analyzing the physical movements and estimating

the activity areas. This paper presents the proposed technique based on the optical flow

(Chae and Yoshida, 2010; Teizer et al., 2010; Teizer, 2015b; Chi and Caldas, 2012;

Ishimoto and Tsubouchi, 2013). Moreover, a stereo vision sensor-based monitoring

system using more than one image can help distinguish various objects and represent

them as three-dimensional information to ensure accurate monitoring (Chi and Cal-

das, 2012; Ishimoto and Tsubouchi, 2013). Specifically, this technique can provide the

three-dimensional geometry, high-resolution image correction, and color and textural

information to enhance the monitoring accuracy. However, for various lighting condi-

tions, low resolution and high-performance camera systems may be required. Another

approach can recognize and track objects by analyzing the behavior of workers at the

construction site (Gong and Caldas, 2011). The moving objects are detected based on

the optical flow, the joint probability around the detected objects is calculated using the

naı̈ve Bayesian model, and the workers’ actions are categorized to track and recognize

the objects.

Moreover, an object detection study was performed to clarify the influence of images

distorted in environments such as those involving movement of the background, cam-

era shaking, and rotation (Fu et al., 2016). Moving-object detection could be performed

using images recorded at large distances, such as top views (Zhu et al., 2020). Images

with camera equipment movement or noises were pre-processed through background

compensation. From this, it can be devised a way to make the object detection model

more robust in images acquired from distorted or high-position cameras. In the follow-

ing data for object detection section, various data format and data processing studies

are investigated to examine the effect on object detection according to the characteris-

tics of the image as mentioned above.

2.2 Data for object detection

2.2.1 Data source

The Microsoft Common Objects in Context (MS COCO) dataset, samples of which

are shown in Figure 2.3, is a public dataset provided by Microsoft for computer vision

purposes such as object detection, segmentation, and keypoint detection (Lin et al.,
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(a) (b)

(c) (d)

Figure 2.3: Sample images contained in MS COCO dataset with label boxes (modified

from (Lin et al., 2014)).

2014). Several recent papers on object detection use the COCO 2017 dataset for model

performance evaluation. Object detection libraries based on neural networks, including

TensorFlow and PyTorch object detection API, provide pre-trained models with COCO

2017 datasets. The COCO 2017 dataset has a training dataset consisting of 118,000 im-

ages, a validation dataset consisting of 5,000 images, and a test dataset consisting of

41,000 images from 80 classes. The MS COCO dataset has multiple objects in one im-

age, more complex data than other datasets, and stricter standards in mAP. In addition,

there is an MS COCO Captions dataset in which caption information containing con-

textual descriptions is added for each image from the MS COCO dataset (Chen et al.,

2015). In deep learning-based object detection models, these MS COCO datasets can

be used as base datasets for learning basic object forms in the process of examining

dataset features.

The PASCAL Visual Object Classes Challenge (PASCAL VOC) dataset is one of the
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Figure 2.4: Comparison of the cat and cattle subtrees between ESP and ImageNet

(modified from (Deng et al., 2009)).

representative datasets used in object detection competitions for computer vision fields

such as object detection, segmentation, action classification, and large scale recogni-

tion (Everingham et al., 2010). The PASCAL VOC 2012 dataset comprises training

and validation data, which are 11,530 images including 27,450 object annotations and

6,929 segmentations. PASCAL VOC, MS COCO, and Google Open Images datasets

are representative datasets that are widely used for model performance evaluation pur-

poses, and many detection and segmentation deep learning packages are pre-trained

and distributed based on those datasets. PASCAL VOC uses XML format as an an-

notation file format that contains object information in an image and has 20 object

classes. The MSCO dataset uses the JSON format as an annotation file format and has

80 object classes. The Google Open Images dataset uses CSV format as an annotation

file format and has 600 object classes. The annotation file contains the date when the

data was created for a single image, data license, id, segmentation, bounding box of

objects contained in the image, pixel area, size, category, and other data.

The ImageNet dataset is a large amount of open-source public image database (Deng

et al., 2009). Node size is the portion of images contained within. The red-colored

circle denotes ImageNet’s own categories. The dataset consists of 1000 classes and

contains more than one million data. Approximately 1.2 million are used for training
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and 50,000 for validation. The amount is so large that the learning dataset capacity is

approximately 138 GB and the verification dataset capacity is approximately 6 GB. In

particular, deep learning researchers interested in classification problems tend to utilize

ImageNet datasets consisting of approximately 1000 photos per class and with vast

class types. The ESP is a dataset created by people called ESP gamers, who actively

participate in image labeling through games (Von Ahn and Dabbish, 2004). In Figure

2.4, when ImageNet is compared to ESP datasets, ImageNet datasets, which boast a

vast class type, are more stratified than ESP datasets and have more data volumes every

quarter of the subtree.

Fisheye cameras can cover the blind spots with a wide angle view, but produce strongly

distorted images (Miyamoto, 1964). There have been studies to calibrate fisheye im-

ages for rectification (Chao et al., 2020; Xue et al., 2019; Yin et al., 2018). Adaptation

or rectification process is often required to obtain real physical properties of image

objects. Yet a deep learning model has been tested for the fisheye camera environment

(Blott et al., 2018), and without rectifying the image directly, mapping or augmentation

methods for the distorted images have been applied. A parking slot detection algorithm

has been tested using fisheye camera images (Xu and Hu, 2020). They collected the

dataset under various environments of parking slot with sunny, cloudy and rainy weath-

ers. However, acquiring many types of environmental data could be inefficient and it

needs extra time and cost (Sun et al., 2017). Thus, an appropriate selection of data

or a sufficient amount of data is needed for high accuracy, depending on the property

of target subjects (Cho et al., 2015). While the Fish-Eye dataset reflects image distor-

tion due to camera lens characteristics, there are a large-scale hierarchical multi-view

RGB-D object dataset photographed for the same places and objects at various points

(Lai et al., 2011). Since image datasets obtained according to camera measurement

characteristics, photographing methods, and environment have various characteristics,

using these datasets will be easier to learn image features that are not well learned with

deep learning models.

2.2.2 Data processing

At present, state-of-the-art deep learning models have been applied in various areas.

Various deep learning-based moving-object detection algorithms consisting of deep

convolution networks such as YOLOv5s and R-CNNs have been developed. These

methods are highly sensitive to changes in the background brightness, which can in-
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crease the probability of erroneous detection. Thus, the dataset used in model training

has considerable impact on the performance of the model. In order to obtain the desired

effect in a specific area, it is important to analyse the characteristics of the dataset to

be used for model learning.

Deep learning models have been built using many complex and diverse structures.

These models require a large amount of learning data and learning time. As mentioned

above, instead of studying the structure of the model, aspects such as the number of

efficient learning data, learning epoch, and transfer learning are being studied as ele-

ments outside the model that influence performance. Systems that relies on deep neural

network models are the most efficient and accurate. However, there are still many blind

spots, and there is a limit to object recognition capability. Accordingly, as image pro-

cessing algorithms based on deep learning have been developed, acquiring training

data of high quality and large size becomes a key differentiator. Driver assistance sys-

tems using vision sensors such as monocular cameras and stereo cameras, which are

the focus of considerable research, are instrumental in securing the driver’s safety as

well as the surrounding environment.

There are several deep learning models that are widely used in applications to detect

labeled objects. As a state-of-the-art deep learning model used for object detection,

YOLOv5 provides high detection performance (Redmon et al., 2016; Huang et al.,

2018; Shafiee et al., 2017). MobileNet with SSD reduces computing cost considerably

compared to large-sized neural models (Liu et al., 2016; Chiu et al., 2020). These

training models consist of many layers for extracting feature maps and require a huge

training dataset. However, collecting for these training datasets be time-consuming and

expensive. Furthermore, efficiently selecting training datasets in machine learning is a

challenge (Zhu et al., 2016; Moore and Lewis, 2010; Mehryary et al., 2016).

In recent times, state-of-the-art deep learning models have been applied in various

areas. The dataset provided for the model training substantially affects the learning

performance. In order to obtain the desired effect in a specific area, the characteristics

of the dataset to be used for model learning must be analyzed. In one study, data-

augmentation-based data imputation was used to create a strong monitoring model for

situations where a specific sensor failed in a system that monitors the structural state

of a building (Hou et al., 2022). They augmented the dataset containing characteris-

tics of sensor failure using models such as Generative Adversarial Networks (GAN)

and Long Short-Term Memory (LSTM). Using this method, the deep learning model
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becomes more robust to noisy sensor data by learning the characteristics of the data ac-

quired from a faulty sensor. A deep learning model was used to examine the big data in

the medical field through a visualization algorithm (Qiu and Lu, 2021). Another deep

learning model used various types of sensor data to identify the inlet pipe blockage

level in a centrifugal pump (Kumar et al., 2021).

An example of chained technology is a Deformable Part-based Model (DPM), a model

that recognizes objects based on the decomposition of a kinematically-inspired ob-

ject and a meticulously designed representation represented by a graphic model. It

uses discriminant learning of graphical models and can build models of high precision

performance for object classes. Manually engineered representations, along with mod-

els trained on shallow discriminants, have been one of the best-performing paradigms

for tasks related to object classification. However, in the past, Deep Neural Networks

(DNNs) have been used as powerful machine learning models. DNNs have notable dif-

ferences from the existing approaches to classification. They have the ability to train

more complex models than shallow ones. This expressivity and robust training algo-

rithms allow them to learn powerful feature extraction without manual-design features.

In addition, DNNs have been validated in terms of function and effectiveness in the Im-

ageNET classification task across thousands of classes. They not only classify objects,

but also track the location accurately, and can be used in the task of object detection.

Even with limited computing resources, DNNS are an appropriate technique because

they involve classifying classes with diverse sizes and finding objects in the same im-

age.

Furthermore, deep learning models have been widely used in applications to detect

labeled objects. As a state-of-the-art deep learning model used as an object detec-

tion model, You-Only-Look-Once version 5 (YOLOv5) provides high detection per-

formance (Redmon et al., 2016; Huang et al., 2018; Shafiee et al., 2017), and Mo-

bileNet with Single Shot Multi-Box Detector (SSD) substantially reduces computing

cost, when compared with a large size of neural models (Liu et al., 2016; Chiu et al.,

2020). These training models consist of multiple layers for extracting feature maps and

require a large training dataset. However, collecting data for these training datasets can

be time-consuming and expensive. There have been studies focused on efficiently se-

lecting training datasets in machine learning (Zhu et al., 2016; Moore and Lewis, 2010;

Mehryary et al., 2016). Therefore, it aims to present an efficient learning strategy to

reduce the amount of data by appropriately screening training data to be learned in a
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Figure 2.5: Taxonomy of methods for machine learning based feature extraction and

classifier training methods (modified from (Cheng and Han, 2016)).

complex deep learning model structure. In the deep learning model in various environ-

ments, I propose a data classification created using the characteristics of the sensor and

data utilization model that compensate it.

2.3 Models for object detection

2.3.1 Machine learning-based model

An optical flow-based object tracking model can be used to detect areas where moving

objects exist. However, determining whether the object is human can be more effective

at preventing false alarms in detecting target objects as compared to using optical flow

by itself. Furthermore, such an object detection model can extract useful information

for the target objects and be used to ensure human safety and pedestrian traffic at

industrial sites.

Before studying such cases, various machine learning-based object detection methods

are reviewed (Cheng and Han, 2016). Figure 2.5 illustrates the crucial processes in the

performance of object detection: feature extraction and classifier training. Among fea-

ture extraction methods, there are five types of feature extractor: Histogram of oriented

gradients (HOG), bag-of-words (BoW), texture, sparse representation based (SR), and

Haar-like features. In classifier training methods, there are six types of classifier train-

ing methods: support vector machine (SVM), AdaBoost, k-nearest-neighbour (kNN),
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conditional random field (CRF), sparse representation-based classification (SRC), and

artificial neural network (ANN).

Before the studying cases, I review various machine learning-based object detection

methods in survey In Figure , there are mainly crucial steps that play important roles in

the performance of object detection: feature extraction and classifier training. In fea-

ture extraction methods, there are typical five types of feature extractor including His-

togram of oriented gradients (HOG), bag-of-words (BoW), texture, sparse representa-

tion based (SR), and Haar-like features. In classifier training methods, there are typical

six types of classifier training including support vector machine (SVM), AdaBoost, k-

nearest-neighbor (kNN), conditional random field (CRF), sparse representation-based

classification (SRC), and artificial neural network (ANN).

Feature extraction involves mapping from image pixels to high-dimensional data space.

Primarily, object detection performance is affected by the feature space of the input im-

age, so feature extraction is very important. HOG features represent objects using the

distribution of gradient intensities and orientations in spatial regions, and they better

capture the edges of local shape information of objects (Dalal and Triggs, 2005). The

BoW feature model has the advantages of simplicity, efficiency, and invariance under

camera view changes and background noises (Fei-Fei and Perona, 2005). The texture

feature aims to calculate local density variation and patterns on the surface of an ob-

ject, which is important when identifying textural objects such as airports, buildings,

urban areas, and vehicles (Eikvil et al., 2009). SR-based features are used in hyper-

spectral image denoizing and classification, and their core idea is to sparsely encode

high-dimensional original signals by structural primitives in a low-dimensional man-

ifold (Chen et al., 2011). Haar-like feature is mainly used for face detection and is

now widely used for object detection (Viola and Jones, 2001). It is composed of a set

of rectangular regions that are positive- or negative-weighted. The features are calcu-

lated with a sum of pixel values in rectangular regions according to their corresponding

weights. Compared to HOG and Haar-like features, other methods incur higher com-

putational costs because of usual usages in high-resolution images, and they require

more precise calculations. Therefore, a representative feature extractor can be applied

to HOG or Haar-like features for accurately detecting objects.

The kNN classifier is a conventional method for classifying data into n classes, and it

is effectively used in industrial fields (Cover and Hart, 1967). However, it is unsuitable

when dealing with complex object features such as distortion, rotation, and varying
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Figure 2.6: Schema diagram of pedestrian detection using HOG feature and SVM clas-

sifier (modified from (Dalal and Triggs, 2005)).

sizes. The AdaBoost algorithm is widely used as a machine learning-based algorithm

that combines weak classifiers to make a strong classifier by adjusting the weights of

training data (Freund et al., 1996). It is usually applied with a Haar-like feature-based

object detection model to classify Haar-like features. Finally, SVM is one of most pop-

ular and effective machine learning algorithms for solving classification problems such

as pedestrian classification (Vapnik, 1999). It has been widely used in object detection

models such as object recognition, road extraction, change detection, multi-class object

detection, and pedestrian detection (Inglada, 2007; Das et al., 2011; De Morsier et al.,

2013; Bai et al., 2014). The SVM classifier is usually applied with HOG features in

object detection models. In Figure 2.6, such a HOG+SVM model can achieve simple

and powerful detection performance, but SVM has limitations with regard to variance

of objects size, rotation, and distortion. Consequently, this model results in high com-

putational cost to get a high detection performance when used by itself, because the

SVM window detector has to slide in detailed movement.

In one approach, an optical flow is detected in the setting ROI, and an object classifi-

cation is attempted when the optical flow vector value exceeds a threshold (Do, 2020).

After the detection line is set in the preset ROI and the pixel value within the detection

lines exceeds the threshold, the optical flow is calculated around the area. If the cal-

culated optical flow value exceeds the threshold, the HOG feature is calculated with a

determined size near the area and input into the SVM classifier to determine whether
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the object is a person. The limitation of this approach is that the area of interest where

the optical flow is to be calculated is fixed in advance, so it is not possible to prepare

for the case where the object appears elsewhere. The proposed method computes op-

tical flow based on feature points of moving objects in the entire image. Furthermore,

the presented approach only reduces the area in which HOG-based classifiers are cal-

culated, and the performance of the classifiers themselves is not improved. The HOG

feature that is input to the classifier can be improved by adaptively resizing the ROI to

the input dimension of the learned SVM classifier from the HOG+SVM.

Another approach performs pedestrian detection by learning optical flow vector infor-

mation and HOG feature information together with the SVM classifier (Ramzan et al.,

2016). This technique computes a dense but simple optical flow motion vector and

learns it using a HOG feature. However, as the optical flow motion vector is used, the

proposed technique may be adversely affected by the change of light. In certain situ-

ations, the performance is improved compared to the model that detects objects using

only the existing HOG feature, but the computation requirement increases because the

optical flow motion vector is calculated more densely. In order to minimise optical

flow calculation, sparse optical flow method is adopted in the proposed lightweight al-

gorithm. Another approach uses frame difference techniques to find pixels that change

on the screen, set the area where pixels are clustered as ROI, and use a HOG detector

(Hariyono et al., 2014). This study contributes to reducing the amount of computation

cost, but only reduces the area in which the HOG detector is to be computed, and there

is no contribution affecting the detection performance of the HOG detector.

In Figure 2.7, there is a study to detect large-sized objects in an image with HOG fea-

tures and fixed-dimensional SVM classifiers while reducing the input image resolution

(Li et al., 2019). The SVM classifier learns a fixed-dimensional feature vector and clas-

sifies objects. The disadvantage of the SVM classifiers is that the size of the object that

is close to the image cannot be contained in a fixed HOG feature window, making it

difficult to detect using the SVM classifier. To overcome this challenge, the technique

adjusts large-sized objects to the size of the window detector, i.e., the size of the SVM

input vector dimension, in an image pyramid manner. While these methods are effec-

tive in detecting large objects, they are not suited to detecting small objects. If a small

object needs to be found by enlarging the image as in this method, the window detector

will have more areas to process and incur a huge amount of computation. Instead, only

a small portion of the area must be enlarged to fit the window detector size, so that the
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2.3. Models for object detection

Figure 2.7: Schema diagram of HOG multiscale method (modified from (Li et al., 2019)).

small object is detected better and the detection computation is reduced.

There are various classifier models based on machine learning approaches. The classi-

fier is used to distinguish target objects from diverse classes and to capture more hier-

archical, semantic, and informative representations for the objects. Classifiers such as

SVM (Wang et al., 2015), AdaBoost (Freund and Schapire, 1997), and DPM (Felzen-

szwalb et al., 2009) are usually used. Among these classifiers, DPM is a model that

flexibly combines deformation cost and target parts to handle severe deformation. It is

deficient in low-level functionality designed with the help of graphic models and kinet-

ically inspired parts disassembly. on the results of using these local feature extractors

and easily learnable architectures are presented in the PASCAL Visual Object Classes

(VOC) object detection competition, and real-time embedded systems have been de-

signed with a low burden on hardware. The reason is that when searching to classify

objects through the sliding window method, the generation of detection target candi-

dates is duplicated, inefficient, and inaccurate. It also has the disadvantage of having

to manually determine their labeling.

Machine learning techniques have also been used to detect and recognize objects. The

motion of earth movement equipment was detected based on the vision at ground

level (Roberts and Golparvar-Fard, 2019). Images were acquired from excavators or
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dump trucks, objects were tracked using the convolutional neural network (CNN) deep

learning model, and routes were extracted using the hidden Markov model (HMM).

Notably, the HMM leverages trajectories to train a Gaussian mixture model, and the

probability density function of each activity can be determined using support vector

machine (SVM) classifiers. For real-time vehicle detection and tracking for gas station

surveillance, an approach based on the Adaboost classifier and optical flow tracking

was proposed (Xiang et al., 2016). Specifically, the Adaboost algorithm was used to

train the classifier with Haar-like features extracted from positive and negative sam-

ples of the gas station vehicles. Optical flow tracking method was performed to extract

the corner points of the vehicle areas and match the positions of these corners in the

consecutive frames in real-time.

There are studies that propose a model that can recognize robust object extraction

and tracking in any situation based on memory. Although these methods often have

high recognition rates and can work in real time, they all contain objects of interest

without extensive fake information and background, so there is a problem in that they

rely on manually segmented data or labeled databases. In today’s era that requires

complex image data and more accurate and detailed object recognition, I am not only

interested in classifying images but also accurately estimating the class and location of

objects included in the image, which is the object recognition and detection technology.

A major advance in object detection can be rapid, thanks to improvements in object

representation and machine learning models.

Some studies propose a model that can recognize robust object extraction and tracking

in any situation based on memory. Many advances have been made using technologies

such as SIFT (Lowe, 1999), SURF (Bay et al., 2008), and ViolaJones (Viola and Jones,

2004). A method of handling feature extraction and selection in the visual images was

proposed for detecting moving objects in video sequences (Kursun and Favorov, 2010),

which only focuses on the objects of interest while removing fake information data. Al-

though these methods often have high recognition rates and can work in real time, they

all contain objects of interest without extensive fake information and background, so

there is a concern that they rely on manually segmented data or labeled databases. In

today’s era that requires complex image data and more accurate and detailed object

recognition, it is not only important to classify images but also to accurately estimate

the class and location of objects included in the image, i.e., simultaneous object recog-

nition and detection technology.
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Thanks to improvements in object representation and machine learning models, there

have been rapid advancements in object detection. However, some of these have the

disadvantage of incurring considerable computational cost in training networks (Felzen-

szwalb et al., 2009; Szegedy et al., 2013). Advances in this field will have an immense

impact on object detection technology, which can be considered as a learning system,

as well as in developing neural network algorithms using successful neural networks

and related learning systems. However, owing to large changes in viewpoint, pose, oc-

clusion, and lighting conditions, it is difficult to accurately recognize an object, and

it is necessary to locate the object. The object detection task aims to detect objects’

locations in a given image as well as categorize them correctly. The pipeline of an ex-

isting object detection model can be mainly divided into three stages: information area

selection, feature extraction, and classification.

Information area selection is related to the fact that various objects can appear any-

where in the image and have diverse proportions and sizes, so scanning the entire

image using a multi-scale sliding window is the first thing to do. This exhaustive strat-

egy can find every possible position of an object, but it has certain drawbacks. It is

computationally expensive owing to the large number of candidate windows and too

many duplicate windows. It is also difficult to expect good results if fixed types of

sliding window are applied. The second step is feature extraction, which means that in

order to recognise other objects, it is necessary to extract visual features with semantic

and robust features. Typical examples are SIFT (Lowe, 2004), HOG (Dalal and Triggs,

2005), and Haar-like (Lienhart and Maydt, 2002) features. This is a technology created

by simulating the behavior of recognizing objects in the human brain. However, it is

impossible to fully describe all kinds of objects given the variety of shapes, lighting

conditions, and backgrounds, and considerable manual intervention is required. From

this perspective, deep learning-based object detection model is needed for being more

robust in a variety of camera environments.

2.3.2 Deep neural network-based model

There are several concerns in the domain of data acquisition, such as computational

cost, environmental property, and target objects. To overcome this, neural network al-

gorithms such as DNN are being developed. They can learn more complex functions

than shallow ones and do not need manual learning through strong discipline. Since

the proposal of Recursive-Convolutional Neural Network (R-CNN), several improved
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Figure 2.8: Simple diagram of YOLO model structure (from (Redmon et al., 2016)).

models have been suggested, including fast R-CNN that jointly optimizes classifi-

cation and bounding box regression tasks (Girshick, 2015), faster R-CNN that takes

an additional subnetwork to generate region proposals (Ren et al., 2015), and YOLO

that accomplishes object detection via a fixed-grid regression (Redmon et al., 2016).

Each of them improves detection performance compared to the conventional R-CNN

and makes real-time object detection more achievable. In the Approaches section, the

datasets used in the experiment, which are COCO, Woodscape, and a custom dataset

obtained from the hydrogen bus with multiple fisheye cameras installed, are described.

In the Experimental Results section, the contents of comparative analysis of the results

according to the proposed learning method are explained.

Object detection, a sub-concept of computer vision technology, is an automation tech-

nique that identifies objects of interest in an image by distinguishing them from the

background. This technique connects the categories of objects representing objects by

setting a bounding box to detect the correct objects, and deep learning technology is

mainly applied. Figure 2.8 shows YOLOv5, an object detection algorithm based on

deep learning that is used in proposed method. YOLOv5 can ensure that the real-time

update processing speed can keep up with the speed of change in the surrounding en-

vironment, which is one of the biggest challenges of autonomous driving (Qiu et al.,

2017). It has high detection accuracy and high-speed detection. In general, YOLOv5

is largely composed of a backbone and a head. The backbone uses CSP-Darknet as the

part that extracts the feature map from the image. This is similar to the configuration

of YOLOv4. The head searches for the position of the object based on the extracted

feature map, and algorithm sets the anchor box first and then uses it to create the final

bounding box for detecting the object. YOLOv5 has four types of backbones, i.e., s, m,

l, and x based on the model size. The present study used the s model, called YOLOv5s,

which consists of a one-step detection algorithm and a two-step detection algorithm.
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One study on deep learning models to detect small objects (Liu et al., 2021; Tong et al.,

2020) claimed that with the recent development of deep learning models, the detection

performance of objects of medium or large size has improved significantly. However,

detection of objects as small as 20×20 size remains a challenge. In the study, the un-

derlying CNN layer does not contain enough information about small object recog-

nition present in the image. Furthermore, training datasets, which lack the distinction

between background and foreground, degrade the model’s small object recognition

performance. Models including SSD are said to recognize objects of various sizes in

an image, combining several feature maps (Liu et al., 2016; Fu et al., 2017). However,

combining multiple layers of feature maps improves recognition performance for small

objects, but a tradeoff occurs, which decreases the computational speed.

Besides the above, another study found that if only a small object part is entered into

the model, not the entire image, satisfactory performance is achieved even with a small

CNN model (Li et al., 2018). Instead of finding small objects in the entire image, only

a small 96×96 pixel area of the desired position within the image is entered into the

model. The study attempts to classify human facial expressions in the middle of the

image and claims that a model consisting of two CNN and max pooling layers has

satisfactory recognition performance. It makes this challengeable small object detec-

tion problem as including many features of small objects. In this study, the problem of

inputting small areas into the model is solved by assuming that small objects exist in

areas extracted with optical flow method.

Certain researchers developed a deep-learning-based framework for tracking UAVs.

In this approach, moving objects (UAVs) were accurately detected at a high speed by

modifying and improving CNN models based on YOLOv3-tiny in a real-time mea-

sured video stream (Yavariabdi et al., 2021). The algorithm was characterized by mul-

tiple detection steps and tracking steps between frames. In the multiple detection phase,

the FastUAV-NET architecture used five insertion units and a pyramid network. In the

multi-tracking step, the detected boundary box was tracked using the scale-adaptive

Kernelized Correlation Filter (sKCF). Thus, algorithms to detect UAVs could be ap-

plied to every sixth frame, and efficient and accurate tracking could be performed in

intermediate frames through sKCF (Montero et al., 2015). This approach could ef-

fectively address the challenges associated with the high speed of UAVs, changes in

the UAV scale and aspect ratio, variations in the illumination condition and camera

viewpoint changes, and reflected light and shadows.
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The system that relies on deep neural network model is the most efficient and accurate

technology. However, there are still many blind spots, and there is a limit to recogniz-

ing objects. Accordingly, as the image processing algorithm based on deep learning

developed, it became the key that acquires training data of high quality and large size.

Driver assistance systems using vision sensors such as monocular cameras and stereo

cameras are of immense help in securing the driver’s safety as well as the surrounding

environment, and many associated studies are being currently conducted.

In particular, heavy equipment vehicles and buses face many blind spots compared to

general automobiles, and as the risk of a collision sharply increases when the vehicle

is reversing, rear cameras mounted on vehicles are gradually becoming more popular.

For this reason, many studies have focused on detecting common objects and pedes-

trians behind vehicles (Kim et al., 2016; Tadjine et al., 2013; Ma et al., 2009; Yankun

et al., 2011). The main objectives of their research are to reduce the risk of collision

and to detect and inform the driver of moving objects behind the vehicle in motion

(Braillon et al., 2006). To avoid missing objects in these blind spots, a wide range of

visual equipment and sensor equipment is required, as well as suitable algorithms to

effectively train using limited data resources.

One study on object detection and semantic segmentation uses information from var-

ious sensors as features in an unmanned vehicle environment (Feng et al., 2020). The

research uses information such as RGB image, LiDAR, and 3D points obtained from

Radar sensors. As pedestrian safety is important in a vehicular environment, a method

of fusing various deep learning models to obtain accurate pixel location information

where objects exist is suggested. The study adopts a two-stage fast R-CNN, one-stage

YOLO, and a multi-modal model that combines SSD models and various sensor infor-

mation. Another study uses a deep learning model that segments moving objects (Chen

et al., 2021). Using 3D LiDAR data, binary classification is performed for each image

pixel from the model of structure. It inputs the depth differences between frames and

pixel positions into CNN layers for encoding and decoding of convolutional outputs.

Using the inter-frame difference information, it is possible to generate a useful fea-

ture with a small input value only for moving objects. However, this method requires

high-performance computing devices and expensive sensors, so it is not suitable for

the purpose of the problem considered in this study.
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2.3.3 Application of learning-based models

There are studies for pedestrian detection algorithm. A recent study applied various

features to make high-level semantic feature to detect pedestrian (Liu et al., 2019).

They suggest a new perspective for pedestrian detection, compared with sliding win-

dow classifier or anchor-based prediction in tradition approaches. That paper proposes

a detector that scans for feature points on the image such as corners, blobs, and other

feature extractors, and they optimize the suitable convolutional network for these fea-

tures. Another researcher uses filtered channel features to improve pedestrian detec-

tion performance (Zhang et al., 2015a). One study classified deep infrared pedestrian

based on deep neural networks using the automatic image matting method (Liang et al.,

2019). This method provides efficient solution to improve classification performance

of infrared pedestrian using deep neural network, while maintaining network structure.

There is a study that learns and calculates optical flow based on a deep learning

model and combines it with a classification model such as the YOLO model (Zhang

et al., 2019b). The researchers attempted to exploit optical flow information from video

frame and apply object detection technology to the videos. The application of moving

object detection models to video data is a challenge of conditions such as motion blur-

ring, video defocusing, and partial covering. Therefore, the algorithm was developed

to accurately detect and track moving objects by deciding the position of the bound-

ing box. It uses the feature map of optical flow value within two adjacent frames ob-

tained through FlowNET 2.0. The target moving objects in the frame are detected from

YOLOv3 detection model. The method of calculating the optical flow using learning

model is that the interference time is less than the dense optical flow and the perfor-

mance is similarly maintained. However, it is unsuitable for the purpose of studying

lightweight algorithms, as it requires several times the computational cost rather than

traditional sparse optical flows such as Lucas-Kanade method.

There have been various studies on object detection for improving model efficiency

and detecting small objects. A recent study increased efficiency of incremental transfer

learning using scalability of knowledge distillation for fast object detection (Yuwono

et al., 2022). To detect small objects in high-resolution satellite images, deep feature

extraction is adapted using dilated convolution and contextual information for improv-

ing on model efficiency and detection of small objects (Wu et al., 2021). Another study

on detecting small objects applies a clustering algorithm based on YOLOv3 to improve

model instability (Wang et al., 2021). There is a study to detect coal-gangue, which pro-
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poses fine-grained object detection based on spatial and channel attention mechanisms

(Lv et al., 2021).

Recently, many researchers developed approaches to detect moving objects by using

optical flow and deep learning based model. With the widespread application of un-

manned aerial vehicles (UAVs), moving objects have been attempted to be detected

and tracked using cameras within the UAV (Zhang et al., 2019a). In this approach,

the moving objects were detected by subtracting a background changing in a complex

manner from an image captured by a moving camera. The algorithm extracted motion

areas based on optical flow and removed the background to perform clustering around

moving objects. Noise was eliminated by removing a false foreground based on time

and space consistencies. A frame skip strategy was used to accelerate the algorithm.

In addition, moving objects for UAVs were detected by obtaining images in real time.

A dense optical flow technique was used; however, the background was assumed to

be fixed. By obtaining top-view images in the aviation domain, the map for moving

objects can be extracted using background removal and mean shift segmentation tech-

niques. Notably, dense optical flow techniques are time intensive, and nearly 3.5s are

required per frame, which limits the application of such techniques to heavy equipment

such as microcontroller units (MCUs) (Zhang et al., 2015b). To address this limitation,

I use a sparse optical flow technique.

For UAVs, certain researchers proposed a robust onboard visual algorithm based on the

reliable global-local object model for 2D and 3D object tracking to achieve a reason-

able computational time (Fu et al., 2016). This approach is based on global matching

and local tracking. The algorithm initially identifies feature correspondences. An im-

proved binary descriptor is developed for global feature matching, and an iterative LK

optical flow algorithm is used for local feature tracking. Furthermore, an efficient lo-

cal geometric filter is used to manage the outlier feature correspondences based on a

new forward–backward pairwise dissimilarity measure, thereby ensuring pairwise ge-

ometric consistency. In another study, objects on the ground were identified using the

YOLOv3 deep learning model for UAVs (Meng et al., 2020). The images recorded

by aircraft were transmitted to computers using in-flight communication systems, and

neural network models were implemented through the computers. It can be thought

of combining using optical flow techniques for local feature tracking and classifying

objects using deep learning models. Inspired by these application studies, it can get

the idea of the sparse optical flow used for object tracking and the object detection
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(a) (b) (c)

Figure 2.9: Process of tile selecting method. (a): Tiling for different CNN input size of

544x544 (2 tiles). (b): 352x352 (6 tiles). (c): 256x256 (12 tiles). (from (Plastiras et al.,

2018)).

algorithm for classifying objects based on that area.

Figure 2.9 shows a selective tile processing technique to create an efficient CNN-based

object detection model (Plastiras et al., 2018). In this study, the size of the tile is deter-

mined according to the input size parameter of the CNN model, and the input image

is divided into several tile regions. The proposed method selects a tile with objects in

each divided tile area and then inputs only the selected tile area into the CNN model

to detect the object. As objects may appear in excluded tiles, the proposed technique

introduced a function called tile reset. This is similar to the feature reset function of

the optical flow method proposed in this paper. In conclusion, this work increases the

computational processing speed by reducing the size of the input layer of the CNN in

a way that deals with the resolution of the input image. These approaches can be seen

as similar to the algorithms that combine the optical flow-based ROI and classification

model proposed in Chapter 5. However, they merely remove unnecessary areas of im-

ages taken from high positions from drone equipment of high-performance CPUs. In

contrast, the approach proposed in this paper removes unnecessary regions through an

optical flow-based tracking model and classifies only objects in the regions of interest.

Furthermore, it can overcome the fixed SVM dimension problem of machine learning

techniques through resizing methods to improve detection performance.
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2.4 Summary of Chapter 2

In this chapter, the basic background of data and algorithm for object detection models

are introduced. In moving-object tracking section, optical flow techniques for calcu-

lating and tracking pixel movements and various object tracking models using them

are introduced. Dense optical flow and background subtraction are not suitable for the

lightweight detection model proposed in this paper because of its high computational

cost. Accordingly, it aims to track moving objects from fixed cameras, such as surveil-

lance systems.

In the moving-object tracking application, the detection performance was affected by

image characteristics in the case of distorted images such as wide-angle cameras or

images taken from high-position cameras. In the data processing section, the effect

of datasets on model performance, abnormal data value classification and learning

strategy, and amount of learning data was analyzed. The features and relationships

of dataset are analyzed and used to establish the coverage capabilities and combination

learning strategies of dataset features.

In the object detection section, the characteristics of learning-based classification mod-

els from the perspective of various camera environments and noise tolerance, and the

disadvantages of high computational cost are examined. The learning-based model is

noticeably influenced by the feature of the learning data, and it is difficult for small

objects at a distance to be learned. The classification model can be used within the

ROI where the location of the object is estimated through moving-object tracking. By

resizing the ROI to make the outer features of the moving object more distinct, it is

possible to better detect the subset of the dataset containing small objects that are diffi-

cult to learn. Finally, the proposed algorithm employs deep learning models and CNN

classifiers to better detect the features of moving objects in the ROI extracted by the

optical flow method.
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Moving object tracking based on

sparse optical flow

In this chapter, a new approach for moving-object detection and tracking is proposed.

One of its major attributes is to improve the accuracy performance and reduce the com-

putation time while responding to moving objects or moving pedestrians. The proposed

method is based on the sparse optical flow approach, i.e., a coarse-grained optical flow,

but it includes the corner feature reset with a moving window. A sequence of images

effectively finds the flow of moving objects, and thus the moving window of image

frames easily captures moving targets without wasting much time.

The moving window detector improves the noise filtering and the detection rate by

looking at a history of optical flows. In a hazardous environment, such as the construc-

tion sector, there may be the risk of encountering many obstacles including walls and

trees, and various optical flow patterns are often observed, when pedestrians should

be detected. The memory-based target estimator plays the role of monitoring the tar-

gets or pedestrians without missing targets when they move around or stagger at some

positions. Even if a moving target is initially recognized, the target may move continu-

ously with occasional pauses. Using this estimator, the last position of a moving target

is estimated, which improves the performance of detecting moving objects in a row.

This detection algorithm was adapted in the embedded board system, Raspberry Pi

4B, for real-world applications. The experimental results demonstrate that the sug-

gested approach is effective for preserving the detection performance even with an

embedded device having low computing power. According to the experimental results,
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Figure 3.1: Overview of the proposed algorithm; the green boxes show detection of

moving objects.

the proposed method shows similar or higher accuracy performance compared to the

conventional algorithms for moving-object detection using optical flows or vision pro-

cessing algorithms, e.g., Lucas–Kanade method and Farneback’s method, in addition

to HOG and Haar-like methods. It also takes lower computing time than dense opti-

cal flows and other vision processing algorithms. The approach works well even for

blurred images or noisy image frames. This content is also available in a published

journal (Choi et al., 2022b).

3.1 Methods

I propose a method based on optical flow algorithm to track moving objects. In order to

operate smoothly in small embedded equipment, it applies sparse optical flow among

optical flow algorithms. The sparse optical flow uses corner point as a feature in which

the optical flow is calculated. There is a function that generates this corner point, and I

would like to introduce a corner feature reset function that optimizes the corner feature

function. By assigning window memory for each corner feature, I add moving win-

dow detector and memory estimator functions to enhance detection performance and

robustness to noise.

Figure 3.1 shows the process flow of the proposed real-time video-based algorithm.
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The proposed algorithm is based on sparse optical flow, which receives each frame of

the video as the input and calculates the motion degree of the objects. Specifically, the

algorithm calculates the motion information from all pixels of each frame, not as a

dense optical flow (Farneback) (Farnebäck, 2003) but Lucas-Kanade(LK) as a sparse

optical flow (Bouguet et al., 2001). In addition, I extract the corner feature during LK

optical flow calculation and estimate the moving object using only the moving infor-

mation of this feature. More accurate and efficient motion information can be obtained

by adding the regenerative function of the corner. I input videos with resolutions of

383 ⇥ 288 and 768 ⇥ 576. Every N frames, the corner feature points are generated

with Shi-Tomasi algorithm (Shi et al., 1994). The sparse optical flow algorithm calcu-

lates the moving information of feature points. The moving window detector collects

the feature points for optical flow. If the tracking moving object disappears behind a

wall, obstacles, or outside of a frame area, the memorized estimator checks the region

around the target.

The LK method uses feature points to track the optical flow, which may render object

detection over large distances challenging. In contrast to dense optical flow techniques,

which evaluate all the pixels on the frame and neighboring pixels, LK optical flow cal-

culates feature points such as corners to facilitate tracking. Notably, if the moving

objects are at a large distance, they are difficult to distinguish from noise. In detect-

ing the motion information for each frame, a noise filtering function is introduced to

alleviate the camera vibrations and light spread phenomena. To detect and track the

moving objects obtained through feature extraction and LK optical flow, I introduce a

memorized estimator to estimate the position of moving objects by memorizing infor-

mation regarding the last missing position. This approach is expected to be effective in

situations in which the object stops moving or is obscured by certain obstacles in the

video input.

Notably, the proposed algorithm is based on the pyramid LK method but incorporates

corner reset, noise filtering, and moving-object estimation (yellow box in Figure 3.1).

Moreover, I aim to implement the proposed algorithm in embedded systems that can

be used in places such as construction sites to ensure personnel safety.

3.1.1 Corner feature reset

For sparse optical flows, corner features are detected, and a set of features is used for

optical flow calculation to decrease the computational time. The corner features are

33



Chapter 3. Moving object tracking based on sparse optical flow

Corner Feature 
Reset

Figure 3.2: Example of corner feature reset method.

typically generated for a given image snapshot by using the Shi–Tomasi algorithm.

Although moving objects can be tracked using optical flows, they may be hidden near

obstacles or walls and appear again, or a new object may be observed in the image.

Thus, corner feature reset must be performed to identify all the moving objects. Cor-

ner features are regenerated in regular period to prevent this problem. However, the

process is not implemented for every frame because corner feature algorithms are time

intensive.

Figure 3.2 shows an example of corner features based on the corner feature reset. The

red box shows that the corner feature reset method regenerates the corner features in

a period of time. The green box shows the detected moving object using proposed

algorithm. The pedestrian features are retained for continuous tracking. The red box

shows the region that the moving pedestrian traverses. This region may not be relevant

for tracking anymore, but another moving object may be present in the area. Corner

feature reset is aimed at identifying the corner features in the region for the optical flow

of another moving object.

3.1.2 Moving window detector

The original pyramid LK method is vulnerable to noise such as that pertaining to light

smudging in the input image and camera vibration. Even if no moving object is present

in the actual optical flow, false positives may be induced owing to even small noises.

To overcome these problems, it is used a filtering function and enhance the detection

performance in Figure 3.3. The moving window method memorizes the feature points

for optical flow within each of n frames. The green boxes show detection of a moving

34



3.1. Methods

! ! + # ! + $ ! + % ! + & ! + ' ! + (

Figure 3.3: Example of the moving window detector method.

object.

MWi,t = {Pi,t�n,Pi,t�n+1, · · · ,Pi,t�1} (3.1)

The moving window function aims to memorize the feature points for optical flow

within each of n frames. The presence of noise is evaluated by determining if the move-

ment of the feature during an interval is less than or equal to the distance threshold.

The window memory container MWi,t in Equation (3.1) continually saves the location

of feature point i at time t over M points, Pi,t (i 2 M). If t < n, the memory size is

less than the n memory capacity. In contrast, when t > n, window memory overflow

occurs, the oldest memory Pi,t�n is removed from the window memory container, and

the recent memory Pi,t is pushed to the end of the container. When corner reset is

implemented and the point is tracked, the window memory container of the point is

maintained, not reset.

DPi,t =
t�1

Â
t 0=t�n

DPi,t 0 =
t�1

Â
t 0=t�n

(Pi,t 0+1 �Pi,t 0). (3.2)

To enhance the detection performance, especially when capturing a distant moving

object, the moving window method changes the distances of the first and last locations

in the window memory, to determine whether the feature is a moving object. Instead of

the sum of moving distances within a period, the threshold measurement is based on the

varied distances of the points because the vibration related noise moves continuously
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Figure 3.4: Example of the memorized estimator method.

in a certain period. In contrast to the summed value, the change in location in the

period does not cumulate the moving distances, and only the changes in the initial and

final point locations are determined. Thus, the change in point locations is defined in

a constant time interval, DPi,t , and use it instead of the sum of changes in the point

locations P(x,y) from time t �n to t �1, as shown in Equation (3.2).

Li,t = dist(Pi,t�n,Pi,t), Di,t =

8
<

:
1, if Li,t � a

0, if Li,t < a
(3.3)

In Equation (3.3), Li,t is the movement distance, measured using the Euclidean dis-

tance method, in units of pixels. Moreover, a is the distance threshold to determine

whether the point is a noise or moving object. Di,t is a flag that operates the moving

window detector function and identifies whether point Pi,t is a moving target or vibra-

tion noise, based on Li,t . For example, if Di,t = 1, the green detection box is generated

around point Pi,t . A high distance threshold can block the sensor noise and obtain more

definite movements, demonstrating lower recall but higher precision performance. The

performance metrics must be adjusted based on the detection environments.

3.1.3 Memorized estimator

I propose a function to estimate the location of the tracking object, even if it is tem-

porarily stopped or hidden behind obstacles, by estimating the feature points pertain-

ing to the target in Figure 3.4. The green boxes show detection of moving objects. The

green detected box is maintained on the target over a given time span.
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Ei,t =

8
<

:
t, if Di,t = 1

Ei,t�1 �1, if Di,t = 0 and Ei,t > 0.
(3.4)

In Equation (3.4), t is the estimation time. Ei,t represents the estimator for the feature

point i at time t and is reset to t when feature point i has a detection state of Di,t = 1,

determined using Equation (3.3). If the moving window detector Di,t is set as zero and

the detector Ei,t is more than 0, the memorized detector Ei,t is reduced to Ei,t � 1 in

each time step.

The non-zero estimator (Ei,t > 0) attempts to detect hidden targets. For example, if

certain feature points lose the tracking target or the target is hidden because it is beyond

the camera frame or behind walls or obstacles, the memorized estimator continues to

track the feature points of the target. The green detected box is maintained on the

feature point while estimation time Ei,t . In addition to the effect of the moving window

detector, a higher t increases the recall and decreases the precision performance.

3.2 Experimental environment

The proposed method is influenced by feature point characteristics such as the corners

for calculating the optical flow and tracking the next point. Experiments are performed

to identify an effective feature generating algorithm by comparing several algorithms.

First, it is specified the control parameters for all algorithms: corner reset interval,

maximum number of corners and corner distance, semi-metric parameters, number

of missing boxes (non-existent feature points in the label box), and number of real-

generated features. To select the optimal parameters for each algorithm, I investigate

the semi-metric comparison results, apply the selected parameters to the algorithms

and evaluate the performance. The follow subsections describe the semi-metric param-

eters of each algorithm and performance evaluation.

3.2.1 Dataset

I conduct an experiment by applying the proposed algorithm to two large datasets and

perform a comparative analysis with other existing algorithms, as shown in Figure 3.5.

Figure 3.5a–c show the first dataset: Videos 1, 2, and 3 correspond to walk data for a

person walking in a straight line in a hallway, flow data for back and forth movement,
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(a) (b) (c) (d)

Figure 3.5: Examples of datasets (CAVIAR and PETS2009). (a): Video 1(Walk). (b):

Video 2(Browse). (c): Video 3(Browse Whilewaiting). (d) Video 4(Pedestrian).

and waiting data for a person pausing in the middle and then continuing to walk back

and forth, respectively. The red boxes show the ground truth contained in the datasets.

The dataset has a resolution of 384 ⇥ 288, and the number of video frames are 790,

1042, and 610. The proposed algorithm is compared with dense and sparse optical

flow algorithms. In the second dataset, video 4 shows the surroundings, containing

more individuals than those in the first set. The resolution is 768 ⇥ 576, and the num-

ber of frames is 794. The proposed algorithm is compared with pedestrian detection

algorithms (dense and sparse optical flow algorithms and Hog and Haar-like methods).

The first dataset focuses on the recognition and evaluation performance of moving

objects instead of pedestrian shapes, and the second dataset is aimed at comparatively

analyzing the proposed algorithm with algorithms that can estimate shapes and moving

objects. The two datasets are significantly different: The first dataset contains slowly

walking people, whereas the second dataset contains rapidly walking people. In the

first dataset, the moving targets are more difficult to detect because of the presence

of fewer people and people who are walking slowly. Because the two datasets have

different resolutions, I consider the resolutions of 384 ⇥ 288 and 768 ⇥ 576 as small

scale and large scale, respectively, to ensure a fair comparison. In the comparison of

the optical flow methods, video 4 is resized to the small scale (video 4S, resolution

384 ⇥ 288). When comparing machine learning methods, videos 1–3 are resized to the

large scale (videos 1–3L, resolution 768 ⇥ 576).

3.2.2 Missing box of corner parameters

In the proposed method, to detect moving objects, I calculate the optical flows of each

feature point, determine the next point movement location, and detect moving objects

by inspecting the moving window memories of the points. Therefore, the feature points
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Figure 3.6: Number of missing boxes with various corner extraction methods. (a–d): Shi-

Tomasi method (a pixel distance of 5, 10, 15, and 20 between corners). (e–h): Harris.

(i–l): Random grid.

for calculating the optical flow and next movement are essential and important com-

ponents of the proposed method. The feature points are typically spotted around exist-

ing moving objects and those that recently appeared in the frame. The feature points

tracked on the moving objects remain on the target objects.

To observe this situation and enhance the performance of the corner generation algo-

rithm, I define a parameter, that is, the number of missing boxes, which counts the

label boxes of non-existent feature points to determine the optimized values. In Fig-

ure 3.6, a higher number of missing boxes means that the feature point generation

algorithm does not generate feature points to calculate optical flows. The corner de-

tection methods control the number of corner features and the pixel distance between

corners. Test dataset is video 1, ‘Browse WhileWaiting1.mpg’ from CAVIAR dataset.

A lower number of missing boxes corresponds to a higher detection rate. When both

number of generating corners and distance between corners low, corner features are

generated densely, and it causes a lot of missing boxes.
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Figure 3.7: Generated features with various corner extraction methods. (a): Shi-Tomasi.

(b): Harris. (c): Random grid.
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Figure 3.8: Number of missing boxes in every 10 frames with Shi-Tomasi method. (a):

Video 1. (b): Video 2. (c): Video 3.

I specify the real generated corner numbers for the above mentioned experiment en-

vironments to examine the influence of the corner features on the number of corners,

as shown in Figure 3.7. Test dataset is video 1. Shi-Tomasi corner extraction tends to

make more feature points than Harris corner extraction. If the number of corners is

large, the frames per second (FPS) for the processing is high. In contrast, if the number

of corners is small, the accuracy of feature tracking to determine the optical flow are

high. Certain feature point generating algorithms have dependent parameters such as

the corner distance versus corner number. In the case of corner-generating algorithms,

setting the corner distance limits the maximum number of generation points, depend-

ing on the inter-corner distance, maximum number of corners, and presence of corners

in the frame. If the corner distance is excessively high, the number of corners is low at

a given frame size. I examine the number of real generated corners or feature points for

each feature generating method (Shi–Tomasi and Harris corner extraction algorithms

and random grid point methods).
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Considering the corner feature extraction results based on the number of missing boxes,

the parameters of the corner-generating algorithms are determined to optimize the per-

formance. To specify the best corner generation framework, I inspect the number of

missing boxes in 10 frames of three typical public datasets. Figure 3.8 shows that the

missing boxes are exposed at first, as indicated by the black solid line when the mov-

ing objects appear or disappear, and disposed off. Test datasets are videos 1, 2, 3. This

observation indicates that the feature points to track the moving objects are effective

and appropriate.

3.2.3 Evaluation of corner parameters

To evaluate the influence of the corner generation on the performance, the recall and

precision for the corner generation algorithms are measured. The Shi–Tomasi and Har-

ris corner extraction algorithms and randomly located point method are compared in

terms of the LK optical flow tracking feature points. The variance in the corner gen-

eration parameters is the same as that in the previous subsection. In this section, the

results of only one test dataset (Browse WhileWaiting1.mpg) is presented owing to

the limited space. The recall, precision, and number of missing boxes, and number of

generated features are presented in the following figures.

The following metrics are typically used in object detection experiments: True positive

(TP) means successful detection of the ground truth labels, false positive (FP) means

detection failure, and false negative (FN) indicates the number of non-detected labels.

The precision, recall, and F-score are determined as T P/(T P+FP), T P/(T P+FN),

and 2⇥ (Precision⇥Recall)/(Precision+Recall), respectively. In this case, b is 1.

Precision indicates the detecting accuracy rate, recall represents the proportion of de-

tected true labels, and the F-score is a generalized measurement considering both the

recall and precision. These typical evaluation measurements are used in the following

analyses.

Figure 3.9 shows the recall results for various corner parameters of the Shi–Tomasi

corner extraction algorithm (first row), Test dataset is video 1. Harris corner extraction

algorithm (second row), and randomly generated features (third row). With the increase

in the maximum number of corners, the recall performance steadily increases and be-

comes convergent and stable. The Shi–Tomasi corner extraction algorithm outperforms

the other algorithms in terms of the recall. As shown in Figure 3.10, the Shi–Tomasi

and Harris corner extraction algorithms exhibit similar precision performances and
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Figure 3.9: Recall performance with various corner extraction methods. (a–d): Shi-

Tomasi method (a pixel distance of 5, 10, 15, and 20 between corners), (e–h): Harris.

(i–l): Random grid.

the values converge, although the Shi–Tomasi algorithm is slightly superior. Thus, the

most effective feature generating method is the Shi–Tomasi corner extraction algorithm

with the maximum number of generated corners being 150–200. Corner reset interval

parameters exhibit similar results over 60 frames. The corner distance parameters re-

sults are similar in four columns. I select the corner distance parameter as 10 pixels

(second column), which corresponds to a stable and high performance in terms of the

recall and precision. In the following analyses, I choose the best parameter values for

the considered methods.

Moreover, I evaluate the grid located point results. The randomly located point method

exhibits an unstable performance, likely because of the stochastically generated point

locations. Thus, well-distributed tracking point must be used when implementing a

limited number of generation corner number. Distance between corner refers the pa-

rameter using in the corner extraction algorithm, which determines the distance be-

tween extracted corners. In the case shown in Figure 3.11, setting a maximum corner
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Figure 3.10: Precision performance with various corner extraction methods. (a–d): Shi-

Tomasi method (a pixel distance of 5, 10, 15, and 20 between corners), (e–h): Harris

corner. (i–l): Random grid.
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Figure 3.11: Performance with a regularly-spaced grid of sampling points. (a): Missing

boxes. (b): Generated features. (c): Recall. (d): Precision.

number is meaningless because the points are generated according to the grid of the

constant corner distance. Therefore, I investigate the corner distance and corner reset

interval parameters in terms of the number of missing boxes, number of real generated

features, recall, and precision. The grid generated point method exhibits a large num-

ber of missing boxes, but the recall and precision are low. Moreover, the second plot in

Figure 3.11 shows that the generation of excessively many tracking points decreases
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Chapter 3. Moving object tracking based on sparse optical flow

the computational speed.

3.3 Experimental results

The proposed method differs from other moving-object detection algorithms owing to

the implementation of the moving window and estimator method on the LK optical

flow algorithm, which enhances the object detection performance and helps overcome

the limitations of sparse optical flow techniques. The estimator operates synergistically

with the moving window method by preventing the failure of determining the sparse

optical flow. Specifically, when the moving window tracking for the change in the loca-

tion of the feature points fails, the estimator is activated. The estimator remembers the

last location of the tracking object and predicts the presence of the disappeared object

on the spot. Therefore, I conduct experiments to examine the detection performance

with changes in the parameters of the window and estimator: window sizes, distance

thresholds, and estimation times.

I test four datasets: Browse WhileWaiting1.mpg, Browse1.mpg, and Walk1.mpg from

the CAVIAR dataset for comparing moving-object detection algorithms using typical

sparse and dense optical flow; and PETS09-S2L1.webm from the ETS2009 dataset

for comparing pedestrian detection algorithms with Hog and Haar-like SVM detection

models (Dalal and Triggs, 2005; Viola and Jones, 2001). The experiments for recall

and precision are independent of the accuracy because this parameter is influenced

by the algorithm parameter settings. Notably, FPS is influenced by the electric power

stability of the device. Raspberry Pi 4 is used, and thus, 20 experiments are conducted,

and the average and standard deviation of the 20 values are considered. It examines

the effects of the moving window and estimator and compare the performance of other

object detection algorithms.

3.3.1 Results with changes in window size

The window size is a key parameter of the moving window function in the proposed

method. The function contains the locations of all tracking points (x,y) in the moving

window memory from time t �window size to t, and thus, each window memory has a

specific size. When the window memory is full, the last location memory is eliminated,

and the recent location memory is pushed to the end of the list. Therefore, a constant

window memory size is maintained. The window tracks the change in the location
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of each point and decides whether it is a moving object or noise by considering the

moving distance threshold. The influence of the change in the window size is reflected

in terms of the true number of detection boxes, recall, and precision. The total number

of alarms is the total number of predictions obtained using the proposed detection

method, and this value is compared with the true number of detection boxes.

In the case of a small window size, the history of the tracking point is limited, and the

change in the points’ locations is observed. The probability of the point being identified

as a noise instead of a moving object is higher. In contrast, for a large window size,

the history of the tracking point is adequate, and the point location can be tracked to

examine if it is moving object. However, the detection of true target boxes may be

missed because considerable time is required for the evaluation, and the window may

fail to track the point when the moving object disappears. For example, if the window

size is 40 and the object is moving in 50 frames, the detection box has less than 10

frames. Therefore, the window size must be properly selected. I conduct experiments

with different window sizes and examine their influence on the number of detected

boxes and accuracy.

As shown in Figure 3.12, the number of detected moving object boxes increases with

the window size, and the difference in the ratio of the total predicted detections and true

detections increases. This gap signifies that as the window size increases, the proposed

method tends to erroneously indicate that moving objects exist. In other words, ex-

tremely high window sizes deteriorate the detection performance because more time is

required to decide whether the target is in a moving state. However, at larger window

sizes, the number of true detected moving objects stabilizes but the number of pre-

diction alarms increases. This aspect indicates that the above mentioned phenomenon

likely has another explanation. When the algorithm examines a longer history of the

tracking point and location changes (when the window size is larger), it is more likely

to identify the target point as moving object even when it is stationary state. If the

tracking point movement distance exceeds the moving window distance threshold, the

moving window detection algorithm judges the object to be moving when the change

in the location exceeds the threshold. Therefore, the object is likely to be predicted as

a moving object even when the target tracking point stops. Sparse optical flow cannot

easily track fast-moving objects and thus an object may be considered to be moving

even when the tracking point does not lie on the moving object.

With the change in the window size, there occurs a crossing-over point at which the
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Figure 3.12: Number of boxes and accuracy of the moving window method; test

datasets are video 1 for (a,d), video 2 for (b,e), and video 3 for (c,f). (a–c): Total predicted

detections (total alarm) and true detections. (d–f): Recall and precision performance.

recall and precision curves intersect. This point is likely an optimal value to ensure

a stable performance between the recall and precision as well as the F-score (F1).

The total true detection number steadily increases and adversely influences the recall

performance. Thus, longer tracking of the change in the point location leads to the

detection of more true moving objects because the moving window detector obtains

the interpretation based on a longer history at each point. The precision decreases as

the recall increases because the optic flow tracking points that remain at and depart

from moving object are considered to be in the moving state by the moving window

memory. I validate this analysis by investigating the output detection labelled video.

The red labelled box is the ground truth box, the green labelled box is the detection

result of the moving-object detector algorithm, and the blue labelled box pertains to

false detections. The findings indicate that the optimal window size is 10 frames.

3.3.2 Results with changes in distance thresholds

Figure 3.13 shows the number of false detections to validate the noise filtering ef-

fect based on the distance threshold in the moving window method. A high distance

threshold prevents the detection of the noises from vibrating cameras in locations such
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Figure 3.13: False detections and accuracy of the moving window method. (a): False

detections for videos 1, 2, 3. (b): Recall and precision for video 1. (c): Video 2. (d): Video

3.

as construction fields. In contrast, a low distance threshold enables the detection of

minute noisy vibrations and small moving objects. A lower distance threshold corre-

sponds to a higher recall and lower precision. The black line shows that high threshold

distance filters the noises and tiny movements. The green line shows that noise filtering

in the moving window distance threshold method helps achieve more precise results.

3.3.3 Results with changes in estimation time

The memorized estimator remembers the last position at which the calculation was

stopped for a certain period (frames) and continues prediction even when the moving

object stops or disappears from the video. To evaluate and select optimal parameters

for this function, I determine the number of detections according to the estimation

time and existence of the estimation function. The performance indicators of recall

and precision are determined.
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Figure 3.14 shows the results of the number of detections, detection elapsed time, re-

call, and precision. When the proposed detector uses the estimator, the non-estimated

detection number refers to the number of successful detections of the moving object.

When the proposed detector uses only the moving window and distance threshold

method, the estimated detection number means the detection counts when the detector

estimates the target. The detection time is the elapsed time until the proposed detector

identifies a moving object when working on an estimated or non-estimated tracking

target. As shown in the first row of Figure 3.14, a larger tracking estimating time cor-

responds to a decreased probability of detecting moving objects than that pertaining to

non-estimated tracking. When the estimation time is longer, the estimator spends more

time on the moving targets and less time on the non-estimated targets because the

detector for the moving objects implements the estimation more frequently. Moreover,

the elapsed time until a moving object is detected is less than that for the non-estimated

detection tracking. This finding shows that the estimator works faster when detecting

moving objects if they temporarily stop, by carefully observing the movement.

The memorized estimator influences the detection accuracy. When the object is not

sensitively detected, the detector misses the moving target and the estimator supple-

ments the insufficient information of the moving target by memorizing the target’s last

location information such as the moving window memory. As shown in the last row in

Figure 3.14, the recall is stable as the estimation time increases higher; however, the

precision decreases because the estimator remains activated when the moving target

stops or moves behind obstacles such as walls, trees, or roofs, when observed through

a top-view camera.

The proposed algorithm has three key parameters. Based on the experimental results,

I determine the optimal parameters for the corner features (generation method, maxi-

mum corner number, and corner distance), memorized moving window (window size

and distance threshold), and memorized estimator (estimation time).

In Figure 3.15, LK method corresponds to the sparse optical flow, which is the basis

of the proposed algorithm, MV corresponds to the proposed moving window detec-

tor without the memorized estimator, and MW + Est pertains to framework with the

memorized moving window and memorized estimator. The recall and precision of the

proposed algorithms (MV and MW + Est) are comparable to the existing algorithm.

Thus, the proposed model exhibits a high accuracy and reproducibility for actual mov-

ing objects. Figure 3.15 shows the influence of the proposed methods (moving window
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Figure 3.14: Estimation time of the memorized estimator method. Test datasets are

video 1 for (a,d,g), video 2 for (b,e,h), and video 3 for (c,f,i). (a–c): Number of detections.

(d–f): Tracking time. (g–i): Recall and precision.
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Figure 3.15: Performance of proposed methods. (a): Recall. (b): Precision. (c): F-score.

detector and memorized estimator) on the recall and precision for three input videos.

The white bar corresponds to a low recall and high precision accuracy, which is not
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suitable for detection and may increase the possibilities of accidents pertaining to

missing moving objects such as workers in the industrial field. The proposed moving

window detector and memorized estimator can help enhance the safety and detection

performance. Both methods exhibit higher recall and precision. Moreover, the estima-

tor enhances the true detection rate, and the estimator influences the false detection

rate for disappeared or stationary tracking objects. As shown in Figure 3.15c, the F-

score slightly increases. In the industrial field, the safety of workers from dangers is

more important than the false alarm rate. In particular, mis-detections of workers op-

erating near heavy equipment may lead to fatalities, whereas false alarms may simply

be considered cautionary.

3.4 Comparisons

3.4.1 Comparison with other conventional methods

I halve or double the resolutions of the input videos according to the object detection

algorithm. Machine learning detection algorithms such as Hog and Haar-like algo-

rithms typically learn objects with resolutions of 64 ⇥ 128. The resolution of videos 1,

2, and 3 is 384 ⇥ 288 and that of video 4 is 768 ⇥ 576. The resolution of videos 1, 2,

and 3 is converted to 768 ⇥ 576 and compared with video 4 in terms of machine learn-

ing object detection algorithms; the videos are named videos 1L, 2L and 3L. Moreover,

the resolution of video 4 is converted to 384 ⇥ 288 for optical flow object detection

algorithms, and it is named video video 4S.

The LK optical flow method using in the comparison experiment is a typical moving

object detection algorithm based on sparse optical flow, and a simple noise filtering

function of the moving distance threshold is applied between the locations of the pre-

vious and present pixel. The Farneback method is also a typical moving object detec-

tion algorithm based on dense optical flow and simple noise filtering function of the

optical flow magnitude threshold for pixels. The Hog and Haar-like object detection

algorithms are famous machine learning classification methods based on the learning

weights of pedestrian. All the algorithm codes are sourced from the official OpenCV

community site .

The method consists of the moving window system and the target estimator. Although

the computational speed of the proposed algorithm is similar to that of typical sparse
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Table 3.1: Comparison of proposed method with object detection methods using optical

flow; video 4S indicates a small scale of images from video 4.

Methods Input TP FP FN Precision Recall F-score FPS

Proposed

Method

video 1 653 123 277 0.84 0.70 0.77 48.02 (±0.70)

video 2 1038 207 303 0.83 0.77 0.80 45.31 (±0.50)

video 3 595 156 258 0.79 0.70 0.74 46.36 (±0.93)

video 4S 4028 609 622 0.88 0.86 0.87 30.96 (±1.71)

Lucas–Kanade

Method (Bouguet et al., 2001)

video 1 185 20 745 0.90 0.20 0.33 51.70 (±1.56)

video 2 583 24 758 0.96 0.43 0.60 50.75 (±1.28)

video 3 249 29 604 0.90 0.29 0.44 50.51 (±1.13)

video 4S 3736 476 914 0.89 0.80 0.84 36.62 (±1.49)

Farneback

Method (Farnebäck, 2003)

video 1 654 159 276 0.80 0.70 0.75 4.27 (±0.06)

video 2 1041 264 300 0.80 0.78 0.79 4.29 (±0.05)

video 3 563 112 290 0.83 0.66 0.74 4.23 (±0.05)

video 4S 3442 417 1208 0.89 0.74 0.81 4.23 (±0.06)

optical flow in Table 3.1, as indicated by the FPS in the embedded system (Raspberry

Pi 4), it achieves a higher recall and precision. Even at a slightly lower FPS, the pro-

posed method outperforms the existing algorithm in terms of the recall, precision, and

F-core. The dense method exhibits a low FPS but recall, precision, and F-score are

similar to the proposed method, which performs extensive calculations for the opti-

cal flow vector and magnitude of all pixels. This finding indicates that the proposed

method can optimize the costs of the applied functions (moving window detector and

memorized estimator) and achieve a higher performance than the existing moving ob-

ject detection algorithms based on the optical flow. In experiments on video 4S, a lower

FPS than other videos is achieved, and there are more moving objects in terms of the

TP. The results for video 4 corresponds to a slightly increased recall but comparable

precision. As mentioned, videos 1–3 have slow walking people, whereas video 4 has

many people who walk rapidly. The proposed method exhibits a reasonable prediction

performance in the presence of vibration noise. In the case of videos 1–3, the proposed

method can effectively distinguish the slowly moving target and vibration noises. In

contrast, the LK method evaluates slowly moving targets as vibration noises and thus

cannot detect moving targets. In video 4, many pedestrians move rapidly, and thus,

the LK method can effectively detect targets. In other words, the proposed method can

robustly distinguish vibration noises and moving targets.

Table 3.2 indicates that the recall, precision, and FPS for the proposed algorithm are
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Table 3.2: Comparison of the proposed method with other pedestrian detection meth-

ods; video 1L, 2L, 3L indicate a large scale of images from videos 1, 2, 3.

Methods Input TP FP FN Precision Recall F-score FPS

Proposed

Method

video 1L 708 118 222 0.86 0.76 0.81 16.58 (±0.40)

video 2L 1076 208 265 0.84 0.80 0.82 16.43 (±0.28)

video 3L 645 119 208 0.84 0.76 0.80 16.61 (±0.29)

video 4 4117 440 533 0.90 0.89 0.89 12.20 (±0.09)

Pedestrian

Detector (HOG) (Dalal and Triggs, 2005)

video 1L 5 2 925 0.71 0.01 0.01 1.29 (±0.01)

video 2L 40 37 1301 0.52 0.03 0.06 1.29 (±0.01)

video 3L 2 2 851 0.50 0.001 0.001 1.28 (±0.02)

video 4 2886 63 1764 0.98 0.62 0.76 1.29 (±0.01)

Pedestrian

Detector (Haar-like) (Viola and Jones, 2001)

video 1L 6 1 924 0.86 0.01 0.01 2.04 (±0.02)

video 2L 22 0 1319 1.00 0.02 0.03 2.00 (±0.02)

video 3L 1 10 852 0.09 0.001 0.001 1.96 (±0.03)

video 4 2912 341 1738 0.90 0.63 0.74 1.83 (±0.02)

higher than the typical pedestrian classifiers, Hog and Haar-like methods. The Hog and

Haar-like detection algorithms incur high calculation costs because they calculate the

masks of the pixels and classify whether the pixels are objects from prebuilt learning

weights. Notably, machine learning models cannot effectively detect objects that are

distorted or rotated from those in the learning model. In the case of videos 1–3L, the

proposed method detects many moving objects, but the Hog and Haar-like methods

miss the objects owing to distortion. In video 4, which is typically used for machine

learning detection algorithm, the proposed method exhibits a comparable precision

and higher recall than the compared algorithms. The findings indicate that different

sizes and distortions of pedestrian objects affects the detection accuracy of Hog and

Haar-like methods. In other words, the proposed method can outperform the machine

learning algorithms in moving object detection.

3.4.2 Comparison in noisy videos

Table 3.3 summarizes results for noisy video frames (blurred, poisson, gaussian, and

salt-pepper noise in four videos), obtained using the proposed method and other meth-

ods. The considered noises are representative types of image noise. In the case of

blurred noise, pixels in the blurred frame are filtered and averaged with five neigh-

bouring pixels. Poisson noise is a type of electronic noise generated with the averaged

distribution of extended scaling to the input pixel values. Gaussian noise is generated

with gaussian distribution of zero mean and 0.01 variance. Salt-pepper noise is gener-
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Table 3.3: Test results with blurred, poisson, gaussian and salt-pepper noises.

Methods Input

Blurred Poisson

Precision Recall F-score FPS Precision Recall F-score FPS

Proposed

Method

video 1 0.68 0.65 0.67 48.54 0.80 0.59 0.68 47.81

video 2 0.83 0.75 0.79 45.34 0.80 0.72 0.76 45.37

video 3 0.78 0.57 0.66 45.76 0.72 0.64 0.68 45.10

video 4S 0.86 0.88 0.87 31.43 0.89 0.85 0.87 31.27

Lucas–Kanade

Method (Bouguet et al., 2001)

video 1 0.55 0.14 0.23 51.12 0.74 0.17 0.27 51.09

video 2 0.82 0.33 0.47 51.34 0.75 0.36 0.49 50.51

video 3 0.64 0.26 0.37 50.87 0.59 0.28 0.38 49.96

video 4S 0.92 0.58 0.71 36.49 0.90 0.52 0.66 35.88

Farneback

Method (Farnebäck, 2003)

video 1 0.86 0.65 0.74 4.27 0.63 0.64 0.64 4.26

video 2 0.86 0.73 0.79 4.30 0.86 0.70 0.77 4.29

video 3 0.96 0.58 0.73 4.22 0.89 0.52 0.65 4.21

video 4S 0.90 0.74 0.81 4.21 0.86 0.70 0.77 4.21

Methods Input

Gaussian Salt & Pepper

Precision Recall F-score FPS Precision Recall F-score FPS

Proposed

Method

video 1 0.59 0.52 0.55 47.29 0.63 0.43 0.51 46.18

video 2 0.68 0.69 0.68 44.65 0.64 0.54 0.58 43.46

video 3 0.65 0.54 0.59 44.76 0.52 0.53 0.52 44.20

video 4S 0.88 0.77 0.82 30.21 0.86 0.69 0.77 29.43

Lucas–Kanade

Method (Bouguet et al., 2001)

video 1 0.40 0.13 0.20 50.13 0.29 0.07 0.11 48.56

video 2 0.72 0.25 0.37 49.87 0.33 0.14 0.20 46.93

video 3 0.57 0.22 0.32 49.01 0.30 0.12 0.17 47.04

video 4S 0.91 0.47 0.62 35.19 0.80 0.37 0.50 33.85

Farneback

Method (Farnebäck, 2003)

video 1 0.70 0.32 0.44 4.18 0.51 0.31 0.38 3.63

video 2 0.88 0.49 0.63 4.19 0.78 0.48 0.60 3.74

video 3 0.83 0.35 0.49 4.17 0.56 0.35 0.43 3.60

video 4S 0.76 0.63 0.69 4.04 0.73 0.63 0.68 3.37

ated with a noise density of 0.05, which affects 5% of the pixels. Blurred and poisson

datasets correspond to weak noise, and gaussian and salt-pepper datasets correspond

to strong noise. Table 3.3 is presented in two parts: The upper table corresponds to

weak noise, and bottom table corresponds to strong noise. The datasets include origi-

nal noises from camera vibrations and image quality, and I add more intense noises to

the datasets to verify the robustness of the methods against noise.

The Hog and Haar-like methods exhibit inferior detection performance and low robust-

ness in various environments because of the fixed pretrained filter weight, distortions,

and various sizes of the moving targets in the frame. I compare the LK and Farneback

methods (as sparse and dense optical flow methods, respectively). The parameters of

53



Chapter 3. Moving object tracking based on sparse optical flow

the compared methods is optimized to ensure a fair comparison. For the LK method,

the corner quality parameter ranges from 0.01 to 0.1 to avoid a large number of corners

being generated on the noise. For the Farneback method, I set the mean N parameter

from 3 to 30 to normalize the baseline of decisions between noises and moving targets,

which smoothens the generated optical flows. The precision, recall, F-score, and FPS

results are compared.

The results presented in Table 3.3 are considered to evaluate the robustness of the pro-

posed method. The precision, recall and F-score of the proposed method for videos 1,

2, 3, and 4S is slightly deteriorated. The performance of the LK method is significantly

deteriorated on the noisy datasets, especially in the case of salt-pepper noise. The LK

method cannot effectively decide whether the feature points are noise or moving tar-

get owing to a large number of features generated on the noise. For the Farneback

method, the recall is significantly decreased in the case of gaussian and salt-pepper

noise videos. Because the Farneback optical flow is calculated on all pixels including

noises, it can eliminate the noise effects, but loses the sensitivity of moving target de-

tection. in the case of blurred noise, the Farneback method calculates the optical flow

that is lower than that for normal datasets, resulting in slightly lower recall and higher

precision. In contrast, the proposed and LK methods lose precision owing to the am-

biguous generated corners on the blurred spot. The result of video 4S are similar for

all methods in Table 3.1; however, in the cases shown in Table 3.3, the performance of

the LK and Farneback methods are considerably different. This video has fast moving

and many pedestrians without noises. However, the addition of blurred, gaussian, and

salt-pepper noise renders video 4S challenging, more moving objects are detected as

noise and vice versa.

The proposed method memorizes the location history of each feature point in the mov-

ing window and tracks the target in the window. The proposed method can effectively

distinguish the additional noise and moving targets because each feature point has its

own window memory. The proposed method outperforms the LK method and achieves

a higher FPS than the Farneback method. Therefore, Table 3.3 demonstrates the ro-

bustness of the proposed method in noisy environments.
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3.5 Summary of Chapter 3

Moving object detection and tracking are technologies applied to wide research fields

including traffic monitoring and recognition of workers in industrial fields. However,

the conventional moving object detection methods have faced many problems such

as much computing time, image noises, and disappearance of targets due to obsta-

cles. In this chapter, I introduce a new moving object detection and tracking algorithm

based on the sparse optical flow for reducing computing time, removing noises and

estimating the target efficiently. The developed algorithm maintains a variety of corner

features with refreshed corner features, and the moving window detector is proposed

to determine the feature points for tracking, based on the location history of the points.

The performance of detecting moving objects is greatly improved through the moving

window detector and the continuous target estimation. The memory-based estimator

provides the capability to recall the location of corner features for a period of time,

and it has an effect of tracking targets obscured by obstacles. The suggested approach

was applied to real environments including various illumination (indoor and outdoor)

conditions, a number of moving objects and obstacles, and the performance was eval-

uated on an embedded board (Raspberry pi4). The experimental results show that the

proposed method maintains a high FPS (frame per seconds) and improves the accu-

racy performance, compared with the conventional optical flow methods and vision

approaches such as Haar-like and Hog methods.
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Data selection for deep learning model

Several vision-based object detection models have been applied on image databases.

Deep learning models including YOLOv5 can be applied to object detection in fisheye

images. However, towing to the geometric distortions and perspective changes, adap-

tation is required to recognize objects and pedestrians in these fisheye images. Further-

more, the environmental conditions, such as indoor or outdoor and day or night, also

influence the object detection. In general, a single deep neural network model learned

from an environmental dataset is not well fitted to another image dataset. Fisheye lens

cameras have a wide viewing angle, which can be used for monitoring pedestrians or

automobiles with a vehicle. Images from six fisheye cameras mounted on a hydrogen-

powered bus as well as from another type of fisheye camera on an excavator vehicle

were collected under diverse environmental conditions and camera positions. The ve-

hicles are supposed to monitor a moving path of pedestrians in the surrounding area,

with the potential for developing autonomous driving in the future.

The custom image datasets are classified into six category subjects depending on the

environmental conditions, whether the images are captured indoor or outdoor, day or

night, or the views are at low or high angles. The capability of deep neural networks

learned for a subject being run compatibly for another subject is investigated. Each

subject dataset has training data and test data. The YOLOv5 architecture was applied

to each image dataset for training and a cross test among six subjects was conducted.

From the results, an influence graph is built between a set of subject datasets by com-

paring how much the performance of image classification is improved when a deep

neural network trained for one subject is tested on another subject. In the experiment,

57



Chapter 4. Data selection for deep learning model

the relationship graph of the custom subjects is determined by training 5%, 20%, and

100% of the entire dataset for each subject and testing the trained network on the val-

idation datasets for the other subjects. Interestingly, similar influence graphs for inter-

subject relationship were obtained even with varying percentages of the training set. If

a positive effect between a pair of subjects is found in the influence graph, the dataset

can be included in the training data.

In this chapter, a cross-test approach is proposed between a pair of subjects to con-

firm if the subjects have different coverage for object detection. It can easily mark the

shadow zone for a pair of the custom subjects in which objects or pedestrians are not

detected in the dataset for a given subject but are satisfactorily detected for another

subject used for training. From the cross-test approach and the influence graph, it can

be determined whether a deep neural network for a subject can be compatibly used for

another subject, and also whether it can choose or collect relevant subjects of image

data to improve the accuracy performance of object detection for a given subject. This

content has been submitted to a journal (Choi et al., 2022a).

4.1 Methods

This study aims to establish an efficient strategy for the selection of training data for

object detection to reduce computing time and regulate the amount of input data needed

for training. First, I check the effect of each dataset through training and validation ac-

cording to the ratio of each dataset, the independent effect on the experimental dataset

that can be obtained from the hydrogen bus, and the open dataset defined as a com-

mon base set. Thereafter, it is applied to six fisheye images obtained in real time to

YOLOv5s using multi-fisheye cameras with multiple channels and construct a system

that informs the driver of the results. In addition, it builds the influence graph among

the six custom training datasets using test performances and prove coverage area on

different datasets.

Figure 5.1 shows overview of the proposed strategy. A large amount of data is generally

required when various environments are tested or when one wish to learn image data

of distorted images or test images under varying illumination conditions. In the object

detection problem using deep learning, the higher the number of data to be learned,

the more helpful it is to improve detection performance. It is acquired to training sets

collected in six diverse environments and prepared two representative public training
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Figure 4.1: Overview of the proposed method.

sets for use in object detection. It is used that various ratios of custom training sets

to determine the most efficient ratio for a training dataset. Using two combinations of

training sets, I tested another training set and verified the impact of the additional train-

ing set. It is studied the relationship between the custom training set and homogeneous

and heterogeneous training sets. By analyzing the custom training set, it determines

its characteristics, correlation, and image filtering. Therefore, the core goal of the pro-

posed method is to properly cross-learn the common base set and custom data required

in the current problem scenario so as to increase the recognition rate in any problem

scenario. The following subsection introduces how to utilize the proposed method in

this chapter, the public data of COCO and Woodscape, and custom datasets acquired

from distorted camera images to improve object detection performance.

4.1.1 Various portion of dataset

Neural network models are dependent on the sort of training data provided. All training

sets include the public datasets of COCO and Woodscape as a base training set. The

common base set has a large number of images, compared to the custom datasets. The

features of the datasets can be analyzed by evaluating the test performances. Each of six

custom datasets has its own training set and test set. It allows a set of options for train-

ing a custom dataset. Training is conducted on custom datasets comprising 5%, 10%,

20%, 40% 60%, 80%, and 100% of the entire training set. For every model-training

experiment, the common base set consisting of COCO and Woodscape is always in-

cluded in combination with the above choice. It tries to determine the percentage of
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data that would be sufficient to model a given dataset. From the result, efficient data

selection for various scenarios can be achieved.

4.1.2 Combination of dataset

It tries to verify the improvement of detection rates on the test datasets, by combin-

ing two training sets. For example, learning two diverse types of datasets can result

in improved performance for another type of test set. Even if all of the learning data

acquired from these results are not learned, learning unnecessary data can be prevented

by classifying data with similar tendencies and learning among the corresponding data

groups. In this study, public data is basically always included in learning data, and var-

ious experiments are conducted while additionally configuring custom data as learning

data. When combining data, two or more custom data types are added.

When there are two or more data types, it must be verified that specific types of data

maintain their learning influence. When combining two types of custom data, the first

data is called custom 1 and the second data is called custom 2. To verify the indepen-

dence of the two custom data, it compares the performance change between learning

only custom 1 data and learning the combination of custom 1 and custom 2 data. As

public data is always included in learning, public data and custom 1 data are included

when learning only custom 1 data; it refers to this as the base training set, which is

the basis for two combinations of custom data. The public data consists of COCO and

Woodscape datasets, and I abbreviate those public datasets as C. The public dataset

plays a role of the base set and is included at any time for learning related to the com-

mon base set. It is often chosen either the training set as the base set alone or the base

set plus one of six custom subjects (ID, IN, OD, ON, LA, HA). Here, the training set

is denoted by B.

If a common base set B is defined for neural network training, one subject of the dataset

can be added to the common base set in order to create a new training set. It is then

observed the effect of the model oriented towards one subject on another target subject

by comparing the performance with the common base set and with the common base

set with the addition of the subject. In the experiments, the common base set is set

up using COCO and Woodscape, or one subject plus those two datasets. In fact, the

common base set can be extended to multiple subjects plus the base set C. To observe

the effect of a subject on a target subject, the network learns one subject X together

with the common base set and it is tested on a target subject Y. Based on the result, I can
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find the relationship between subject X and subject Y. It can find the influence graph for

pairs of subjects where the edge provides information of how much the performance

can be improved from that of the common base set.

8
<

:
B : Y

B+X : Y
(4.1)

In Equation 4.1, B represents one of seven base datasets, which are COCO+Woodscape

(denoted as C) datasets, ID, IN, OD, ON, HA, and LA. X represents training data which

is different from B. Y represents the test dataset after learning B or B+X dataset. It can

be denoted to the set B= {ID, IN,OD,ON,HA,LA} union C, X = {ID, IN,OD,ON,HA

,LA}, and Y = {ID, IN,OD,ON,HA,LA}. It will train dataset X with various datasets

B and test on dataset Y. This method verifies whether a particular dataset X influences

a target dataset Y regardless of all the base sets.

a = f (b+ x,y)� f (b,y) (4.2)

In Equation 4.2, it defines the influence value as a. In the function f (b+ x,y), b 2 B

is one of the base training data, x 2 X is added to the training data, and y 2 Y is a test

dataset. The parameter b+x in f (b+x,y) indicates the training dataset composed of b

and x datasets. The next parameter y is a testing dataset. The output value of f (b+x,y)

is the test performance on the data set y by the neural model trained with the data b+x.

8
><

>:

X �!̂
a

Y, if â � t

X 99K
â

Y, if â �t
(4.3)

In Equation 4.3, the normal black-colored arrow indicates a positive relation, and

dashed arrow indicates a negative relation. For example, it would like to examine

whether the influence of learning dataset OD is maintained when OD is learned with

other training datasets. Accordingly, I set X as OD and train OD with other six base

training sets (C, C+ID, C+IN, C+ON, C+HA, C+LA) one by one. Using the trained

models, it is evaluated for the model on one test set (ID, IN, ON, OD, HA, LA).

For validating the trend on learning effects of X, I pick the representative index value

â among the set of a. First, it is eliminated meaningless values and outliers in the set
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of a. Second, I choose the median value of the set as â. If â is over the threshold t, it

depicts the value â on the arrow. Finally, the arrows indicate the trends on the learning

effect of dataset X. When the â is very high, it shows a thick arrow to indicate a strong

trend or a thin arrow to indicate a normal trend.

4.1.3 Relationship of dataset

Through the combination of training using a variety of ratio of custom datasets and

using custom datasets, it can be seen that each dataset has its own characteristics.

Through the preceding methods, I analyze the data characteristics in the training set

I have. For example, data acquired indoors features little change in the background

because the camera is fixed, while the background in data acquired outdoors frequently

changes because the camera is moving on the bus. Data acquired in an environment

where there are many changes in the background may have characteristics that make it

more difficult to learn the target object than in an environment where the background

does not change. Even in the case of day and night, in data acquired at night, it is

difficult to distinguish between object and background, so the object detection model

will not properly learn the features of the object. Depending on whether the angle of

the camera acquiring the data is high or low, the object used for the learning model may

suffer from distortion. The environmental characteristics obtained from these data can

be derived by analyzing the results of model training in various ratios and combinations

of training datasets.

It uses characteristics of datasets to examine the influence and relationship of custom

datasets on each other. First, in the experimental results of combination of base sets,

combinations with another custom dataset are represented as an influence graph. This

can help to infer the characteristics of the base training set and its relationship with

other data by learning and testing it with five other custom datasets fixed. For example,

if a specific dataset B is determined and the influence on X and other test sets after

learning each of the five X except B is generally positive, it can be said that B acts as

a positive catalyst with other datasets. In contrast, if it is generally negative, it can be

said to serve as a sub-catalyst. If the influence is a mixture of positive and negative, the

relationship can be considered irrelevant.
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4.1.4 Coverage effects of dataset

From Section 4.1.3, it is a selected pair of related datasets in the influence graph, then

learn each dataset and evaluate it on the same dataset. I want to check the negative and

positive influences from the actual detection result photos according to the relationship

that the learned dataset has on the evaluation dataset. Here, I define the shadow zone

between a pair of the custom subjects where objects or pedestrians are not detected in

the dataset for a target subject but are well detected for the subject used for training.

To draw the shadow zone on an image canvas for a target subject, a window size of

5×5 pixels in a frame are considered as tiles and the mis-detection rate is calculated on

each tile.

If the mis-detection rate of a tile is over a given threshold of 0.3, the tile belongs

to the shadow zone, and it is painted with translucent and blue-colored polygons of

density 0 to 1.0. The shadow zone refers to false negative (FN). The mis-detection

rate is calculated by 1-recall at each tile. If the detection rate of a tile is over a given

threshold of 0.7, the tile belongs to the green zone, and it is painted with translucent

and green-colored polygons of density 0 to 1.0. The green colored zone is the inverse

of the shadow zone, which is the same as true positive (TP) at each tile. It can be also

considered to false-alarmed zone, which is same as false positive (FP).

When X 99KY , which is a negative relationship, the characteristics of dataset X, which

do not match the characteristics of dataset Y, will be learned, and this shows the areas

where detection fails in the result of C+X:Y. Such an area becomes a shadow zone that

the learning dataset X has for the evaluation dataset Y. When X �!Y , which is a pos-

itive relationship, the characteristics of dataset X that fit well with the characteristics

of dataset Y will be learned, and this shows the areas where detection succeeds in the

result of C+X:Y. By training and testing with negative datasets, I can find it difficult to

learn the shadow zone in the target dataset. With positive datasets, it can identify the

features of positive datasets that can complement the shadow zone, which is difficult to

learn. Thus, learning datasets with specific relationships one by one makes it possible

to identify the shadow zone and the dataset characteristics that complement this area.

I observe the effects of adding a positive dataset to a learning dataset. From the re-

sults of validating two combination-dataset learning, it examines the effectiveness of

learning multiple negative and positive datasets and datasets with positive relationships

together. When the negative-related dataset and the positive dataset are learned together
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and this combination set is applied to the evaluation dataset, the area that was not de-

tected by the negative dataset can be reinforced by the effect of the positive dataset.

In particular, when two datasets with positive relationships are learned together and

applied to the evaluation dataset, the detection coverage areas of each positive dataset

are combined and improve detecting performance.

4.2 Experimental environment

4.2.1 Camera measurement system

The fisheye camera is an ultra-wide-angle lens camera that produces strong visual dis-

tortion intended to create wide panoramic or hemispherical images (Miyamoto, 1964).

Fisheye lenses capture the wide-angled camera view. Instead of capturing images in the

way of straight or rectified linear perspective, fisheye lenses use own mapping method,

which captures images in a convex non-rectilinear perspective. In the typical 35-mm

film format of lens, the normal focal length of the fisheye lens is 8 mm to 10 mm for

circular images and 15 mm to 16 mm for full frame images. This type of lens also has

other applications, such as reproducing images taken through fisheye lenses or gener-

ated through computer graphics onto a hemispherical screen. The fisheye lens is also

popular in scientific photography and geometry, and is widely used as a peeping hole

door viewer to provide users with a wide view.

In this experiment, I use a 35-mm circular fisheye camera having DX-format, produc-

ing cropped circle images as shown in Figure 4.2. The circular fish lenses consider a

180° hemisphere and projects the image within a circle frame. Some circular fisheye

lenses were used in an orthogonal projection model. The fisheye camera has a verti-

cal viewing angle of 180° and a horizontal and diagonal viewing angle of 180°. Most

circular fisheye lenses have a smaller central area of the frame than other conventional

lenses, so the edges of the frame tend to be completely dark. The fisheye cameras

are mounted onto six sides of the bus as shown in Figure 4.2. These cameras capture

images of the front, back, front-left, front-right, rear-left, and rear-right as shown in

Figure 4.2. The camera is supposed to detect pedestrians or bikers moving around the

bus with a wide range of frame. The wide view allows the camera to capture many

objects in the region of interest.

Figure 4.3 shows the foreground of the excavator, the appearance and location of the
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Figure 4.2: Fisheye cameras settings mounted on a hydrogen-powered bus; six fisheye

cameras were used to collect the surrounding images.

fisheye camera attached to the excavator, and the data acquired from this camera. This

camera also captures views of 180° vertical, horizontal, and diagonal angles. The cam-

era is attached to a very high and low height, and the angle is also very high and

low. The top-located camera takes a downward direction at a high angle, showing high

distortion. The bottom-located camera captures forward at a low angle, showing low

distortion.

The collection of the custom image datasets are classified into six subjects depending

on whether the images are captured indoor or outdoor and in daylight or at night as well

as from a high angle or low angle of the view position: Indoor Day (ID), Indoor Night

(IN), Outdoor Day (OD), Outdoor Night (ON), High-Angle (HA), and Low-Angle

(LA). The ID, IN, OD, and ON subjects are obtained from a hydrogen-powered bus

and the HA and LA subjects from an excavator (actually the excavator cameras are re-

positioned in the indoor environment). The datasets ID, IN, OD, and ON are acquired

on a moving bus under various environments. The datasets HA and LA are acquired

in a fixed excavator environment. The same types of fisheye cameras are mounted on

a bus but a different type of fisheye camera with a change of image distortions is used

for the excavator.
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Figure 4.3: Fisheye cameras settings mounted on an excavator.

4.2.2 Dataset

In the experiment, I use eight types of datasets shown in Figure 4.4; (a)–(b) two com-

mon base sets (open-access public data) and (c)–(h) six custom image datasets (a col-

lection of image datasets acquired manually). It is defined for object classes as Person,

Bicycle, and Car (PBC) for the deep learning model; these classes are designed for

the safety of pedestrians on the road. The COCO dataset has 71,103 images having

persons, bicycles, and cars, the Woodscape dataset has 11,249 fisheye images. The

custom datasets are collected with fisheye cameras having a wide-angle view. The im-

ages were taken in indoor and outdoor environments during the day and the night.

Another dataset of images was acquired at two different positions of a fisheye cam-

era, called High-Angle view, which is captured at 4-m height, and Low-Angle view,

which is captured at 1.5-m. The datasets (c)–(h) have 845, 391, 2515, 2565, 1000, and

1000 images, respectively. Each dataset shows its own environmental characteristics

of various environments with illumination, camera altitude, and distortion.

In table 4.1, the characteristics of the custom dataset are classified by dividing them

into several categories. The characteristics of the data are classified by considering

the environment in which the data was obtained, the time zone, the state in which

the camera was attached, and the angle of the camera while looking at the dataset

image. The ID dataset was acquired indoors during the day while the camera was fixed

on a stationary bus, and the IN dataset was acquired during the night. OD datasets
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Examples of public and custom datasets. (a): COCO 2017. (b): Woodscape.

(c): ID. (d): IN. (e): OD. (f): ON. (g): HA. (h): LA.

Table 4.1: Properties of six custom datasets.

Dataset Images Environment Illumination
Camera

Distortion

Camera

Ego-motion

Camera

Angle

Camera

Location

ID 845 Indoor Bright High Fixed High Front

IN 391 Indoor Dark High Fixed High Right

OD 2515 Outdoor Bright Middle Moving High Front

ON 2565 Outdoor Dark Middle Moving High Right

HA 1000 Indoor Bright High Fixed Very High Top

LA 1000 Indoor Bright Low Fixed Low Bottom

were acquired outdoors during the day with cameras fixed to buses traveling around

the city, while ON datasets were acquired during the night. The HA and LA datasets

were obtained from indoor and daytime fixed surveillance cameras, characterized by a

wider range of filming than the ID and IN datasets. In this section, I will systematically

establish the characteristics of the data through a more detailed analysis method and

examine the relationship between the characteristics of the data.

4.2.3 Deep learning model

You-Only-Look-Once (YOLO) is a typical single-step object detection algorithm based

on deep learning. The advantage of this deep learning model is to see the full im-

age and process the object location and classification in a single stage. The YOLOv5
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Figure 4.5: Architecture diagram of YOLOv5 model network (modified from (Gao et al.,

2022)).

model, i.e., the latest version, achieves high performance and real-time object detec-

tion. I use YOLOv5 in the PyTorch framework to reduce computing costs. There are

various versions of the YOLOv5 model depending on the number of layers and param-

eters. Performance is typically measured through Mean Average Precision (mAP) and

Intersection over Union (IoU). Network training was performed using an AMD Ryzen

9 3900X CPU and two RTX 2080TI SLI GPUs.

Figure 4.5 shows the architecture diagram of the YOLOv5 model. The model consists

of three types: a backbone that extracts features, a neck that improves the detection

performance by fusing the extracted features, and a head (prediction) that converts

features into bounding box parameters. The backbone extracts feature maps of vari-

ous sizes from input images through multiple layers of convolution and pooling lay-

ers. Convolution with batch normalization and leaky ReLU (CBL), cross stage partial

(CSP), and spatial pyramid polling (SPP) techniques are used in this layer. CBL is a

block consisting of a convolution layer, batch normalization, and leaky ReLU active

functions, and is a block that is used by default to extract features. The CSP is a method

of performing convolution operations on only a portion of the feature map and inte-

grating it with the rest. By passing only a few feature maps through the convolution
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Figure 4.6: Recall, precision and mAP performance on the public training set with 800

iterations of epoch.

layer, the computation volume can be reduced, and performance can be improved by

efficiently performing gradient flow in the back-propagation process. SSP improves

performance by pooling feature maps into filters of various sizes and merging them

again.

The neck part fuses various sizes of feature maps. It improves performance by mixing

low-level and high-level features using path aggregation network (PAN). The head part

converts the feature extracted from the neck into the final output of the network using

the convolution layer. It converts the parameters of the bounding box (x,y,w,h), the

probability that the object exists, and the probability that the class exists.

4.3 Experimental results

4.3.1 Results with various portion of single dataset

To determine the training period for an iteration of sample learning, I monitored the

transition of performance as the epoch increased. For the results, the YOLOv5s trained

the common base set of COCO and Woodscape. The performances were mostly sat-

urated at approximately 50–100 epochs as shown in Figure 4.6. Thus, the epoch for

training time was set to 100 iterations for the experiments described below.

Figure 4.7 shows the mAP for each custom dataset depending on the various portions

of the training dataset. From these results, approximately 5% of the entire training set

can be sufficient to train the characteristics or trend of a pattern of the training dataset

without OD dataset, which needs more than 5% of the dataset for similar performances

of other datasets. If stable performance is needed, it can select 10% of the dataset
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Figure 4.7: Changes in portions of the full training set. (a): C+ID:ID. (b): C+IN:IN. (c):

C+OD:OD. (d): C+ON:ON. (e): C+HA:HA. (f): C+LA:LA.

instead of 5%. A relatively small portion of the training dataset can capture the trend

of the dataset. These datasets are considered to have homogeneous properties to keep

the data patterns consistent. The feature map of images within a custom dataset may be

similar and the training model can easily detect the fundamental features with a small

portion.

The ON and HA datasets show large improvement, meaning that the characteristics

of both datasets have been easily trained. The environment of the ON dataset is dim

illuminations; the objects are indistinguishable from a dark background. However, a

small portion of the dataset is sufficient to support training. The proposed approach

works well for this type of image dataset, where images cannot be easily used from

common base set. The LA dataset contains a distorted image of a fisheye lens, but it

has a view similar to the camera view commonly found in common base set (Wood-

scape dataset). Figure 4.7 shows the relationships between custom datasets. After train-

ing each selection of the portion of the training set for the custom dataset, the effect

was obtained from the average performance against the test sets of the other custom

datasets. Percentages indicate changes in performance compared to after training with

only common base set. It indicates that the characteristics of the training dataset are
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Figure 4.8: Performance according to the various percentages of the training set. (a):

Test of training ID. (b): IN. (c): OD. (d): ON. (e): HA. (f): LA.

relevant.

In contrast, the OD dataset seems to contain data that takes time to be trained in

YOLOV5s. It is probable that there are a bunch of types of heterogeneous datasets in

the OD dataset. The image was taken from an outside driving bus camera. The dataset

includes images distorted by fisheye cameras and dynamic background images in mo-

tion frames, as well as crowds and distorted images of pedestrians hidden by adjacent

objects. Training dynamic environment datasets provides a hint that it is more difficult

than clean and reliable image datasets. In the indoor dataset environment (see Figure

4.7(a)-(b)), objects are clearly distinguished because a certain level of lighting is ob-

served within a particular dataset. This type of image dataset seems to be widespread

in the common base set.

Figure 4.8 shows performance mAP according to eight percentage sets of the training

set, as tested on the six test sets. Six colored lines in the graph denotes tested datasets.

The test sets are indoor-day, indoor-night, outdoor-day, outdoor-night, high-angle, and

low-angle, and they are shown in red, green, blue, magenta, cyan, and black colored

lines, respectively. It is trained each according to the ratio of the number of data singly

using six custom datasets, and applied them to the test set of the common base set
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Figure 4.9: Difference from only training common base set. (a): 5% of each training set.

(b): 40%. (c): 100%. (d): average of 5 to 100%.

and six datasets to derive the results in Figure 4.8. This is according to the ratio of the

training sets, and 0% is the result when only a common base set is trained. In addition,

it shows the result of training each single dataset, and the test performance of the single

trained dataset is significantly improved. In particular, the results of the indoor day in

Figure 4.8(a) and the outdoor night in (d) are clearly improved. The results of high

angle and low angle in Figure 4.8(e),(f) are somewhat irrelevant.

Figure 4.9 shows the difference from the common base set training performance result

by fixing the ratio (e.g., 5%, 40%, 100%) of six custom training sets and applying them

to each test set. Figure 4.9(d) also shows the average test performance of all ratios of

the training set. This allows me to estimate the correlation between the single datasets

and the learning rate of the single datasets. For example, high-angle dataset and low-
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angle dataset have a close relationship. In contrast, the outdoor night dataset and indoor

night dataset have a relationship that hinders training performance.

4.3.2 Results of combination of base dataset

Table 4.2 summarizes the results obtained by applying the combination of two training

data to each single test data with training data ratio 100%. The meaning of Y is six test

sets and the meaning of X is six training sets added to the base training set, denoted

as B+X:Y. Each numerical value at colored cell indicates a change of test performance

from learning only base training set B to learning added-on base training set B+X

model. While the results of the previous single dataset were derived based on the test

results of the common base set, the results through these two combinations were com-

bined pairwise from six custom datasets, and the single training performance of one of

the two datasets were all It was applied to a single dataset. For example, after training

by combining the indoor day dataset and the indoor night dataset, check the difference

based on the 100% learning result of the indoor day. The combination for the test con-

sists of indoor day+indoor night, indoor day+outdoor day, indoor night+outdoor day,

indoor night+outdoor night, high angle+low angle, and indoor day+low angle.

In Table 4.3, trends of training effects on each datasets are similarly maintained in

both the combination results at training ratios of 100% and 20%. Through this, it is

possible to identify the characteristics of single data based on the common base set

and to grasp the correlation between the common base set and the data more closely

based on one type of single data. For example, when training by combining indoor

day and indoor night, the high-angle test performance is good in two datasets based

on the common base set (Table 4.2), but it is actually significantly lower based on the

indoor day. Conversely, based on indoor night dataset, it is better at a higher value than

lowering by indoor day dataset.

In Table 4.2, it is learned in combination with the remaining six base training sets

that hold the training set X and do not contain X, and each learning model on six test

sets is evaluated. For each learning model, the evaluation results are shown in the line

of the graph. This can be expressed as B(var)+X(fixed):Y(fixed), i.e., as a relational

expression. The line graph analysis helps to examine which base training set differs

from a specific X through the evaluation of a learning model including various base

training sets. The yellow line is the performance change between C+X and C learned

models without other custom datasets, which represents the pure influence of X. The
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Table 4.2: Test performance after 100% of learning each custom dataset according to

the seven base training sets.

ID IN OD ON HA LA
0.325 0.06 -0.02 0.11 0.194 -0.054
0 0 0 0 0 0

0.302 0.017 0.016 0.014 0.143 -0.009
0.154 0.052 0.006 -0.01 0.03 -0.002
0.344 0.148 0.035 0 0.186 0.126
0.334 0.161 0.035 0.095 -0.005 0.063
0.237 0.064 0.005 0.092 0.004 0.008
0.023 0.148 -0.011 0.106 -0.071 -0.033
0 0.105 0.025 0.01 -0.122 0.012
0 0 0 0 0 0

-0.126 0.153 -0.03 -0.003 -0.075 0.016
0.007 0.231 0.025 -0.004 -0.045 -0.099
-0.009 0.238 0.023 0.133 -0.021 0.062
-0.098 0.144 -0.003 0.097 -0.021 -0.002
0.172 0.006 0.361 0.172 0.069 0.003
0.001 -0.002 0.387 0.052 -0.095 0.055
0.023 0.011 0.342 0.063 0.065 0.052
0 0 0 0 0 0

0.192 0.002 0.422 0.001 -0.105 -0.06
0.027 0.141 0.343 0.153 -0.024 0.03
-0.071 0.04 0.324 0.126 -0.167 0
-0.018 -0.078 -0.064 0.709 -0.008 -0.047
0.001 0.01 -0.009 0.599 -0.016 0.133
-0.034 0.005 -0.028 0.599 0.018 -0.113
0.002 -0.082 -0.003 0.538 -0.182 -0.11
0 0 0 0 0 0

0.002 0.008 -0.017 0.729 -0.01 0.069
-0.063 -0.083 -0.052 0.713 -0.076 0.001
-0.009 -0.083 -0.039 -0.023 0.676 0.056
0 0.018 0.016 -0.038 0.477 0.173

-0.041 0.007 -0.005 0.004 0.726 0.151
-0.154 0.052 -0.057 -0.042 0.583 0.083
0.011 0.003 0.008 -0.003 0.674 0.172
0 0 0 0 0 0

-0.093 -0.063 -0.015 -0.007 0.375 0.007
0.087 0.006 -0.018 -0.011 0.294 0.367
-0.001 0.01 0.007 -0.029 0.104 0.429
-0.034 0.002 -0.01 -0.02 0.344 0.398
-0.156 0.04 -0.055 -0.057 0.058 0.364
0.042 0.001 -0.006 -0.007 0.226 0.415
0.003 0.026 0.006 0.005 -0.007 0.318
0 0 0 0 0 0

HA

LA

X
Y

ID

IN

OD

ON
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Table 4.3: Test performance after 20% learning each custom dataset, according to the

seven base training sets.

ID IN OD ON HA LA
0.309 0.034 -0.007 0.084 0.051 -0.047
0 0 0 0 0 0

0.291 0.028 0.012 0.024 0.215 0.013
0.274 0.035 0.033 0.037 -0.037 -0.009
0.302 0.12 0.029 0.005 -0.033 0.101
0.343 0.062 0.003 0.066 -0.008 -0.042
0.326 0.107 0.021 0.057 0.001 0.004
0.022 0.095 -0.004 0.063 0.019 -0.008
0.004 0.089 0.015 0.003 0.183 0.052
0 0 0 0 0 0

0.032 0.044 0.03 0.021 -0.094 0.119
-0.031 0.189 0.028 -0.002 0.025 0.065
0.038 0.123 0.014 0.074 -0.025 -0.028
0.061 0.224 0.017 0.013 0.058 0.016
0.039 0.028 0.205 0.074 0.229 -0.011
0.004 0.029 0.245 0.027 0.141 0.027
0.049 -0.023 0.239 0.032 0.116 0.116
0 0 0 0 0 0

0.087 0.016 0.292 0.01 0.072 0.028
0.174 0.075 0.279 0.098 -0.032 0.036
0.024 0.153 0.228 0.085 -0.046 -0.006
0.007 -0.089 -0.065 0.673 -0.036 -0.027
0 -0.003 -0.029 0.594 -0.12 0.121

-0.046 0.005 -0.033 0.608 -0.03 0.046
0.055 -0.101 0.022 0.609 -0.193 0.012
0 0 0 0 0 0

0.014 -0.056 -0.044 0.708 -0.009 -0.079
-0.011 0.013 -0.022 0.669 0.005 0.008
-0.029 -0.035 -0.029 -0.028 0.611 0.095
0.005 -0.007 -0.019 -0.046 0.552 0.1
-0.013 -0.007 -0.011 -0.017 0.567 0.075
0.106 0.012 0.045 -0.004 0.35 0.142
-0.022 -0.002 -0.008 0.007 0.638 0.043
0 0 0 0 0 0

0.015 -0.018 0.007 -0.019 0.329 0.014
-0.016 -0.097 -0.025 0.009 0.277 0.334
0.001 -0.024 0.003 -0.018 0.227 0.385
0.023 0.032 -0.004 -0.041 0.316 0.358
-0.031 0.028 -0.002 0.02 0.002 0.339
-0.034 0.005 0.018 0.005 0.318 0.369
0.028 -0.08 0.011 0.018 -0.005 0.253
0 0 0 0 0 0

HA

LA

X
Y

ID

IN

OD

ON
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Figure 4.10: Monitoring of various base training set on the six added training set and

six test set. (a): Added training set is ID. (b): IN. (c): OD. (d): ON. (e): HA. (f): LA.

yellow line serves as a reference line for examining the relationship between other base

training sets and X. The results for the same X and test set are learned and evaluated

on the same type of data, so the same influence is maintained on Table 4.2 in general.

Therefore, when combining two custom datasets, it can be seen that the effect of the

added learning data appears with the effect of the already existing learning data every

time one data is added.

In Figure 4.10(a), each plot excepts base training set result same as added training

set. Blue and black lines representing the influence of C+OD and C+LA base train-

ing sets generally appear lower than yellow baseline, suggesting that OD and LA are

heterogeneously related to ID. Unlike ID, the backgrounds of images in OD change

rapidly, while in LA, the camera angle faces the front. Likewise, in Figure 4.10(c), the

red and black lines representing the influence of C+ID and C+LA base training set

appear below the yellow baseline. This can be seen as a heterogeneous relationship

where objects are distorted according to the characteristics of data acquired outdoors

and indoors as well as the difference in angles of installed cameras.

In Figure 4.10(d), except for C+OD base training set, the remaining base training sets

appear to have a positive effect on the ON training set. The data characteristics of the
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Figure 4.11: Performance distribution for the test set according to the added training

set, regardless of the base training set. (a): Added dataset is ID. (b): IN. (c): OD. (d):

ON. (e): HA. (f): LA.

outdoor environment in images captured at late night in ON require learning data to

supplement the object because the object is not clear. In contrast, OD has data char-

acteristics with varying backgrounds, so OD cannot clearly learn the feature of the

object in ON. Therefore, it can be seen as heterogeneous with ON and other custom

datasets. From Figure 4.10(d), it can be seen that the properties with respect to the

image background influence the learning data. Test results in Figure 4.10(e), (f), and

(h) show many deviations between base training sets. Learning HA with C+LA as a

base degraded HA performance, while learning LA with C+HA as a base degraded

HA performance. The deviation of the base training sets indicates that B and X are not

independent, and that the learning data effect of X may be affected by B.

In Figure 4.11, I analyze box plots that visualize summary statistics such as intermedi-

ate, maximum, minimum, and outliers to verify the consistency of base training sets’

influence on a particular X. When multiple Bs are learned with a particular training set

X, the large width of the box means that a particular X does not consistently maintain

the learning effect of any B. X, which exhibits large deviations, is influenced by spe-

cific B in the results shown in Figure 4.10, indicating that the data characteristics of B
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and X are correlated with each other. If an abnormal value appears, it can be seen that

the corresponding B and X are in a heterogeneous relationship with respect to test set

Y where the abnormal value is shown. The high box appearance in the box plot, which

is X =Y , indicates that all Xs maintain consistency in their learning effects regardless

of B.

4.3.3 Results of relationship on custom dataset

In the previous combination on base training set section, I observed the effectiveness

of training by adding custom data as X to another custom data as B. The result of

evaluating the training by combining custom data (X) with base training set (B) was

obtained in the test set as Y, which is summarized as B+X:Y. When examining the

learning effect of X, the differential value obtained by subtracting the result of B:Y

from the evaluation result of B+X:Y was viewed as the influence of training set X.

That is, the base training set appears as a reference line for examining the influence of

the added X. The number of possible training set combinations is equal to the number

of combinations of seven datasets (B) and six datasets (X). It is observed the influence

of B and the characteristics of the dataset as fixed B and changed X, and I looked at the

influence and characteristics of X as fixed X and changed B. In addition, B and X were

fixed and various datasets were evaluated as test set Y was changed, and from this, the

effect of combination training set and the characteristics of test set were examined.

It is shown the results of the two-combination evaluation obtained in the previous sec-

tion as a bar graph in Figure 4.12. The six columns accord with six test sets and the

six rows accord with six training sets added to the seven base training sets, which are

colored bars in each small plot. Performance of the colored bar indicates a change

of test performance from learning only base training set B to learning added-on base

training set B+X model. The horizontal line represents the added training set X, while

the vertical line represents test set Y. The seven bars of various colors in each plot

are base training sets, each representing C, C+ID, C+IN, C+OD, C+ON, C+HA, and

C+LA results. The two-combination evaluation result table obtained in the previous

section is visualized as a bar graph so as to examine the overall influence of added

training set X on test set Y on any base training set. As the diagonal component of the

matrix is the same as the training set and the test set, overfitting occurs, and the perfor-

mance evaluation result is highly effective for any base training set. What is unusual

is that symmetric components other than diagonal components do not tend to be the
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Figure 4.12: Comparison of relationships within the training and test datasets, according

to the seven base training sets.

same. This shows that when training data and test data are opposite to each other, their

influence may be different. In the future, the relationship between homogeneous and

heterogeneous datasets will be examined in more detail through analysis.

In the diagonal component of the matrix, it can be seen that the learning result is not

better than that of other datasets. This means that the IN dataset is not well-learned and

requires more learning or is already sufficiently learned, so there is no need to learn

more. Looking at the results of the single dataset analysis so far, IN showed high-

enough learning results using only COCO and Woodscape, which are public datasets,

and when learning by adding IN data, the additional learning effect is lower than that of

other datasets owing to the dark influence of illumination. In contrast, as the ON dataset

was acquired in a darker environment with more weak lighting than the IN dataset

outdoors, the learning result was very low when using only the public dataset, and it
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Figure 4.13: Partial ordered influence graph from training two combination of datasets.

(a): Only common base set. (b): Considering all base datasets (training dataset ratio to

100%). (c): 20%. (d): 5%.

was confirmed that even a small ON dataset substantially improved the learning result.

Although HA and LA datasets are acquired in similar environments, the size of objects

in the data tends to be generally small because of the wide range of photographs.

This clearly demonstrates the learning effect of the HA and LA datasets, and it can be

inferred that the learning effect is better than that of LA because the camera filming

the HA dataset was at a very high angle at a high position.

When looking at symmetric components except diagonal components, HA and LA

datasets show positive correlations and homogeneous relationships compared to other

datasets, whether they are influenced by similar indoor locations. If X is the ID and Y
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is the HA, the ID has a positive effect on the HA, whereas if X is the HA and Y is the

ID, the effect of the HA on the ID is irrelevant. This allows me to infer a partial ordered

relationship because the ID dataset contains more objects at close distances than HA,

and thus has a better effect of learning near as well as far objects. Similarly, when X

is OD and Y is ID, OD positively influences the learning of the ID, whereas when X

is OD and Y is ID, OD datasets obtained outdoors from a more complex background

than the ID have a more dominant effect.

In Figure 4.13, it is learned with B fixed with six X and graph the evaluation results

for X and five other Y. Nodes in the graph indicate the training set, and each arrow

represents median value within the change of performance based on the other base

datasets. I assume that there is no relationship when the change of performance is

shown to be approximately zero. This is to examine the influence relationship of X

according to B by schematizing the line corresponding to each B in Figure 4.10. When

X is added to B and trained, the test results for any Y are rather degraded, which is

indicated by a negative arrow. Looking at the overall influence relationship of the base

training set, all results have a mixture of positive and negative tendencies. Learning

with IN and HA dataset along with another dataset X generally improves the learning

performance of X, OD and LA dataset reduce X, and ID and ON dataset can be seen

as either retaining X or independent of X. This overall relationship distribution of base

training sets provides clues as to which dataset to prioritize when constructing training

sets.

From a different perspective, it can look at the tendency of the relationship arrows from

one node to another for all B. In Figure 4.13, OD in (a), (b), and (c) has a positive rela-

tionship with ON, regardless of any base datasets, and IN in (a) and (b) has a negative

relationship with HA. HA and LA in (a), (b), (c), and (d) have positive relationships

with each other, such that the same two-way relationship indicates that the two datasets

are homogeneous types. In the relationship between the ID and IN of (a), (b), (c), and

(d), the learning model with the ID is positive for IN.

HA and LA differ in camera angle, which indicates that the objects contained in the

dataset are small because they are far away. Here, I can see that the ID dataset with

illumination being bright, environment being interior, and camera angle being lower

high than HA improves the near-field object detection performance of HA. The pos-

itive effects of HA and LA on each other can be considered as being acquired in a

similar background environment apart from the items of the currently classified data
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Table 4.4: Specified performance of B+X:Y.

Test Train P R mAP Test Train P R mAP

HA

C 0.410 0.281 0.256

ON

C 0.260 0.391 0.277

C+ID 0.700 0.417 0.450 C+ID 0.421 0.462 0.387

C+OD 0.585 0.310 0.325 C+IN 0.377 0.469 0.383

C+LA 0.615 0.547 0.550 C+OD 0.597 0.447 0.449

C+ID+OD 0.599 0.344 0.355 C+ID+IN 0.382 0.507 0.397

C+ID+LA 0.757 0.534 0.554 C+ID+OD 0.514 0.489 0.439

C+OD+LA 0.514 0.408 0.383 C+IN+OD 0.440 0.520 0.446

C+ID+OD+LA 0.549 0.434 0.409 C+ID+IN+OD 0.446 0.486 0.434

characteristics. In the case of LA datasets, the relationship is negative for other test sets,

and when other datasets evaluate LA, the relationship is irrelevant, indicating that the

characteristic of camera angle is a heterogeneous relationship between LA and other

datasets.

Table 4.4 summarizes the results of evaluation on target subjects ON and HA with

a combination of subjects for training; they show strong links in the influence graph

shown in Figure 4.13(a). There are selected test datasets from strictly positive bold

arrows in the influence graph. Training datasets are COCO and Woodscape common

base set denoted to C, positively related single, two, and three-combination datasets. P

is precision performance, R is recall, and mAP is the mean average precision. I cannot

say that more subject collections for learning are helpful to improve the performance

of object detection on a target subject. The relation between a pair of subjects is to

check if a deep learning model for one subject can be compatibly run on another sub-

ject. Even when one subject influences a target subject positively and another subject

is also a positive influence on the target, it may not guarantee the performance im-

provement with a combination of the two subjects for learning, as the two subjects are

not compatible with each other in the influence graph. It implies that learning various

environmental conditions together may not be effective.

It is expected that learning a large number of subjects on a target subject may improve

the performance of object detection. By identifying the coverage area of a deep learn-
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Table 4.5: Characteristics of the fisheye cameras and train-test results among subjects;

using the influence graph, positive or negative effects on a target test subject are shown.

Test Train
Camera

Distortion

Camera

Ego-motion

Camera

Angle

Camera

Location
Relationship

Performance(%)

Train

100%

Train

20%

Train

5%

ID
HA High Fixed Very High Top Negative -4.1 -2.2 -2.8

OD Middle Moving High Front Positive 17.2 8.7 2.8

IN

ON Middle Moving High Right Negative -8.2 -8.9 3.0

ID High Fixed High Front Positive 6.4 6.2 3.0

OD Middle Moving High Front Positive 4.0 2.9 2.8

OD
ON Middle Moving High Right Negative -5.2 -3.3 -4.3

ID High Fixed High Front Positive 3.5 2.9 2.4

ON

HA High Fixed Very High Top Negative -3.8 -2.8 -2.0

ID High Fixed High Front Positive 9.5 5.7 2.4

IN High Fixed High Right Positive 10.6 6.3 2.8

OD Middle Moving High Front Positive 12.6 7.4 3.5

HA

IN High Fixed High Right Negative -7.1 1.9 -1.1

ON Middle Moving High Right Negative -7.6 -3.6 2.8

ID High Fixed High Front Positive 18.6 5.1 1.2

LA Low Fixed Low Bottom Positive 22.6 22.7 13.0

LA HA High Fixed Very High Top Positive 15.1 9.5 8.3

ing model and its characteristics, I will analyze the influence effect of how these results

come about. I inspect the positive and negative related subjects as per characteristics

and performance evaluation of the subjects. I select the candidate subjects in a pair

of positive and negative relationships. Calculating mis-detected rate of model learning

each inter-related subject, I will mark the shadow zone. It will be helpful to explain the

effects of various environmental conditions on the subject.

In Table 4.5, I classify the characteristics classified for each dataset according to the

relationship between the datasets discussed in the partial ordered graph. This is to

perform efficient data selection when combining data by comparing and analyzing

data characteristic items and relationship. Finally, it shows that learning performance

changed in the related training and testing datasets according to the training ratio of

100%, 20%, and 5%.

In the case of test set ID, several datasets have a negative effect. The IN dataset is
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different from the ID dataset in that illumination is dark, and ON has the character-

istic that the environment is outdoors and the camera is attached to the moving bus.

It can be seen that these characteristics negatively affect the bright ID dataset. This

means that the same occurs when the test set is OD and the training set is ON, and

that the characteristic where illumination is bright has an advantage over the charac-

teristic where illumination is dark. When the test set is ON, the IN dataset also has a

positive influence even though Illumination is dark, but when the test set is IN, the ON

dataset shows a negative relationship, indicating that the influence may differ depend-

ing on whether the data are acquired indoors or outdoors. Even when the training set

is OD, the characteristic of outdoor environments is that positive or negative relation-

ships alternately appear depending on the test set. Therefore, it can be seen that the

illumination characteristic absolutely has a relation where bright is superior to dark,

and the environmental environment has a correlation with the environment of the test

set.

When it comes to HA, there are some dynamic changed results in performance of train-

ing 20% and 5%. It can be explained that subject HA is hard to learn under various

environmental conditions such as very high camera angle, and similar indoor place,

compared with training IN, ON, and ID. In this case, there should be more training

subjects IN, ON, and ID, when the target subject is HA. When training subject is

LA, it shows consistent influence on target subject HA. This is because HA and LA

have similar indoor environment condition. Thus, I can state that similar environmen-

tal condition makes it easier for the model to learn than datasets showcasing diverse

conditions.

4.3.4 Results of coverage effects in custom dataset

The results presented in Table 4.5 and Figure 4.13 show the partial ordered relationship

between datasets. Translucent and blue-colored polygons indicate the shadow zone,

which is hard to detect over a 0.3 mis-detection rate. Translucent and orange-colored

polygons indicate the false-alarmed zone, which is hard to detect over a 0.3 false-

alarmed rate. In Figure 4.14, I identify images of learning and evaluation results based

on these results. Learning and evaluation are conducted by grouping each of the six

datasets into a pair of negative and positive relationships. The learning dataset and the

evaluation dataset are paired with different types, and the datasets have heterogeneous

data characteristics with negative and positive relationships as presented in Table 4.5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.14: Pairs of tested custom datasets on training sets of negative (above in

pair) and positive (below) relationships. (a): C+HA:ID. (b): C+ON:IN. (c): C+ON:OD. (d):

C+OD:ID. (e): C+ID:IN. (f): C+ID:OD. (g): C+HA:ON. (h): C+ON:HA. (i): C+ON:LA. (j):

C+OD:ON. (k): C+LA:HA. (l): C+HA:LA.

For example, if the test set is the subject ID, the training sets, which have a negative

relationship with ID, is subject HA, and a positive relationship is OD as presented in

Table 4.5.

The translucent blue area shown in Figure 4.14(a) is characterized by the light of the

day and the edge. This blue area refers to an area in which object detection is not well

performed owing to the data characteristics. When this is trained by the subject OD,

a positive dataset in the partial ordered relationship, the area is improved as shown in

Figure 4.14(d). In Figure 4.14(b), a shaded area covered by lighting is seen during the

85



Chapter 4. Data selection for deep learning model

night time, which is confirmed to be improved when learning with a distinct ID dataset

of light and shade. Figure 4.14(c) is when the test set is OD, and owing to the nature

of the OD dataset, it is difficult to specify areas where object detection is difficult,

perhaps because of the characteristics of frequent background changes during the day.

In Figure 4.14(g), It can be seen that the test set is ON and the dark light and distorted

edges are not well learned. This can be compressed by learning an OD dataset with

bright light and shade. In Figure 4.14(h) and (i), the blue area covers a long distance,

and the object is very small, so detection is difficult. This compacts vulnerable areas

by learning from each other to LA and from LA to HA. In this way, it is possible to

comprehensively learn areas that are not well learned according to data characteristics

with complementary characteristics. Also, this shadow zone implies the meaning of

inverse recall performance.

The translucent orange area shown in Figure 4.14 shows results of false-alarmed tiles

at density of zero to one. Thus, orange-colored zone implies the meaning of inverse

precision performance. As the result of Figure 4.14, a positive dataset in the partial or-

dered relationship makes better results in precision performance than a negative one. It

implies that positive related subject learns better object patterns to test subject. Some-

times, there is false-alarmed zone where is actually no labeled in Figure 4.14(b). It

is result of learning ID subject and it detects better on the area close to camera. So

it detects objects reflected on the mirror of the bus. In Figure 4.14(k),(l), the result

of learning LA or HA subject detects easier objects faraway from camera. This result

supports the learning effect of the partial ordered relationship and data characteristics.

In Figure 4.15, datasets with positive relationships have been learned one by one and

the results of learning two datasets in combination have been presented. Green-colored

region indicates green zone and orange-colored region indicates false-alarmed zone.

From Table 4.5, I select datasets with positive relationships for the same test dataset.

The first and second columns of Figure 4.15 represent the frames of the part that is vul-

nerable owing to the dataset characteristics. They are the results of learning the single

dataset of the positive relationship. The third column shows the enhanced performance

in learning combination of these two datasets. The translucent blue area show mis-

detected shadow zone. The translucent orange area show detected false-alarmed zone.

The translucent green area show detected zone. The shadow zone is the same as false

negative (FN) over the mis-detection rate 0.3, at each tile. The mis-detection rate is

calculated by 1-recall, at each tile. Orange-colored zone is false-alarmed zone, which
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: Result of single and combination learning sets. (a): Result of C+ID:IN. (b):

C+OD:IN. (c): C+ID+OD:IN. (d): C+ID:HA. (e): C+LA:HA. (f): C+ID+LA:HA.

is same as false positive (FP) over the false-alarmed rate 0.3 at each tile. Green-colored

zone is the inverse of the shadow zone, which is the same as true positive (TP) over the

detection rate 0.7 at each tile.

Figure 4.15(b) is the result of learning a dataset OD on a target subject IN, and it is

not possible to detect a pedestrian close to the camera in the middle. Figure 4.15(c)

are the result of learning datasets ID and OD together. From the result, dataset ID of

Figure 4.15(a) improve the shadow zone in dataset OD of (b). Dataset ID in Figure

4.15(a) capture objects close to the camera in the middle better than dataset OD, and

dataset OD captures objects around the outside better than ID. By additionally learning

OD in the dataset ID, Figure 4.15(c) show the results of reinforcing this area. Figure

4.15(d)-(f) are the results of testing on a high-angle dataset, which contains objects

from nearby to faraway distances. It can be inferred that the dataset ID, which can

better capture objects at close distances, has a positive relationship with a portion of

dataset HA. Dataset LA is a dataset containing long-distance objects as seen in dataset

HA, and from this point, it has a positive relationship with dataset HA. Figure 4.15(d)

is a result of learning dataset LA, and it is shown that an object that is considerably

far away is captured. Figure 4.15(e) is a result of learning a dataset ID, and an object

nearby camera is captured. In Figure 4.15(f), dataset LA and ID were learned together,

and the performance was improved by reflecting the characteristics of both datasets.

As a result, I could verify the enhanced effect of combining two positive datasets using

the partial ordered relationship.
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4.4 Summary of Chapter 4

Fisheye cameras having wide viewing angles have been used to monitor pedestrians

or automobiles from vehicles. Given geometric distortions and perspective changes,

adaptation is required to recognize objects. The images are collected from fisheye

cameras mounted upon a hydrogen-powered bus and an excavator. The image datasets

were classified into six category subjects depending on environmental factors. Then,

I developed a cross-test approach to find the relationship graph among a collection of

those subjects, which builds up a deep learning model for one subject and evaluates

the model on a target subject. It can thus be estimated to the coverage of deep learn-

ing models on a target subject for object detection. From the results, it can choose or

collect relevant subjects of image data to improve the accuracy performance of object

detection for a given subject.
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Pedestrian detection based on

convolutional neural network model

In the previous chapter, strategies to cover the shadow zone by combining interrelated

datasets were described. The area is shown according to the distorted lens or the view-

point of the camera. When learning from datasets including many objects located far

away from the camera, the deep learning model becomes better at detecting them but

still fails to detect them in detail. It is assumed that the poor detection performance

is due to small objects suffering from a large loss of input features in the deep learn-

ing model. To mitigate this and better detect the object pattern, it only targets the pixel

area where the desired object is estimated to exist as the input feature for the model. As

the object of interest is a moving object, the area of interest can be extracted through

the optical-flow-based object tracking method proposed in Chapter 3. Combining the

optical-flow-based method and the deep learning method allows the pixels of the region

of interest to be input features of the classification model and reduces computational

costs for object localization. To this end, a trained classifier model with a small number

of layers and a simple function is needed.

Before applying the neural network model, one can also consider the machine learning-

based classification model. The machine learning-based model for object detection is

described in the background of Chapter 2. Before studying a light deep learning model,

it is possible to think of a machine learning model with a lower computational cost than

a deep learning model, but which has a similar function to a deep learning model. There

are SVM models that classify objects using a feature vector of preset input dimension
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and an effective HOG feature for object detection. Therefore, a method utilizing the

optical-flow-based method is proposed so as to reduce the computational cost and im-

prove the performance of the learning-based classification model by focusing on the

image features of the region of interest. But, SVM models are vulnerable to distorted

object size.

Finally, object detection is performed in a deep learning or neural network model, by

entering the ROI containing moving objects extracted from sparse optical flow. With

the neural network models, experiments are conducted upon the latest model including

YOLOv5, to check whether the YOLOv5 model is effective for ROI extracted from

Optical Flow (OF) or not. If the ROI includes multiple objects, the aspect ratio of the

ROI is checked and the ROI divided equally according to the ratio. This replaces the

localization function of individual objects as much as possible with sparse optical flow,

and it will be able to noticeably reduce the computational load. A simple Convolutional

Neural Network (CNN) model that is only responsible for classification functions is

designed, and then the detection performance and computation speed improvement on

the separated ROI are determined. Models that fit the purpose and situation are pre-

sented by evaluating performance with existing models that differ from the proposed

model. This content will be published in a journal (Choi and Kim, 2022).

5.1 Methods

There are various surveillance applications to detect pedestrians with CCTV video

stream or automotive camera. Through the sparse optical flow method (Choi et al.,

2022b), it is possible to estimate the location of moving objects with a small amount

of computation. To classify whether a set of moving points is a pedestrian, the classi-

fication model is applied. Following this concept, I wish to check the validity and lim-

itations of the machine learning models. Machine learning models often use a method

of sliding a fixed size of window in the whole canvas image, and apply the detection

operation to the window frame. In this paper, the region selection approach is applied

with localization of moving objects, and then the region is scaled into the input of ma-

chine learning models including CNNs and decision classifier. For region selection, it

can take a pre-processing method of cropping the area extracted from the optical flow

and resizing it to improve detection performance. it could take a region partitioning

method that divides the moving object region into sub-regions so that multiple objects
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Input Pre Processing Detecting Output

Camera & Video Moving object ROI Input ROI to model Detecting Object
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Figure 5.1: Overview of the proposed method; red-colored markers for the ground truth

label, cyan-colored markers for region of moving objects and green-colored markers for

successful detection.

are identified. Each sub-region becomes an input to the CNN model to classify whether

the object is a pedestrian.

Figure 5.1 shows an overview of the approach, consisting of moving object tracker

with optical flow, cropping and resizing operator, and CNN model. Sparse optical flow

method with memorized estimator (Choi et al., 2022b) is effective to track moving ob-

jects in the video stream. A collection of moving objects can select the ROIs. Then the

regions are cropped and resized into a fixed size of window frames, which include the

area where any moving object exists, and exclude the static background. The regular

size of window images becomes an input of the machine learning model. When an

object is not detected by the object classification model due to a small size of objects,

the resized object image has a better chance of being classified correctly.

In this paper, I compare a well-known classical machine learning model, HOG+SVM, a

combinational model of HOG features and SVM classifier, deep learning models such

as YOLOv5, YOLOv5s, YOLOv5n, and the suggested approach, SPD CNN model

for pedestrian detection. The SPD model is a CNN-based learning model with a small

number of layers and focuses on classification features for a fixed size of image win-

dow. To this end, I propose a two-phase approach, the region selection with sparse
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Figure 5.2: Structure diagram of the suggested SPD network model; yellow-colored

dashed box indicates successful detection

optical flow and the neural network model.

5.1.1 Small-sized pedestrian detection (SPD) network

The deep learning model for object detection extracts visual features from the input

image and performs object localization and object classification. Reducing the amount

of computation performed during object localization could mean a lightweight deep

learning model can be configured because only a small amount of object classifica-

tion function remains. I intend to design a model consisting of simple CNN layers and

FC layers for object classification functions alone. The input dimension of this neural

model is given 128x64 pixels, which assumes a standardized size of a normal pedes-

trian object. The model is named SPD network model for the purpose of detecting

pedestrians appearing in the video for surveillance.

The proposed SPD network model is shown in Figure 5.2. The figure represents one

sample of SPD model which consists of one input layer of 128x64 and three CNN

layers with 3x3 filters. It solves the problem of parameter amplification caused by the

accumulation of CNN layers by adding a max-pooling layer with a 2x2 mask that

extracts representative features to each CNN layer. The number of layers varies from

one to six, and the number of filters is 32 or 64 for each layer. The number of nodes of
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Figure 5.3: Example of moving time window tracker; cyan-colored boxes indicate mov-

ing objects tracked

the FC layer for classification is set to 256, and the dropout layer is applied after the

FC layer with a parameter of 0.5.

Without the max pooling layer, the number of parameters increases exponentially, mak-

ing it impossible to learn models or perform detection operations. Dropout layer is

added after the max pooling layer to prevent overfitting and improve the generalization

performance of the model. In addition to the learned data, objects that have not been

seen in the evaluation environment appear, so overfitting degrades performance in the

test environment. An FC layer is added to the last layer of the model to perform object

classification through image features extracted from the CNN layer.

5.1.2 Region selection for moving objects

Optical flow has been applied to track moving objects in the video stream in various

existing approaches. To reduce the computing time, the sparse optical flow algorithm

(Choi et al., 2022b) has been suggested to match pixels surrounding the corner fea-

ture points and estimate the image flow. The Lucas–Kanade algorithm (Bouguet et al.,

2001) is typically used in the sparse optical flow approach. In the paper, I follow the

sparse optical flow method with moving window and target estimator (Choi et al.,

2022b). Feature points are extracted using the Shi–Tomasi method (Shi et al., 1994)
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with the feature reset function to renew feature points for each frame.

A key feature is the moving time window detector (as shown in Figure 5.3), which

stores and observes the location of the feature point where the optical flow occurs,

and determines and tracks whether it belongs to a moving object. That is, the feature

point is recorded in the moving window array, and then the detector checks whether

the position of the feature point is changed by a certain distance within a certain time

window. If the feature point moves from the starting point to a distance beyond its

threshold, it is regarded as a moving object. If the matched feature point in a sequence

of images is hovering within a certain threshold distance from the starting point, the

feature point is classified as noise. This process reduces the probability of misjudging

a moving object.

The moving object tracking algorithm generates a tracking box at feature points around

the moving object. It regards the tracking box area generated from feature points on a

moving object as an ROI. I crop the region and apply the object classification model

only to this region area, not the whole image. Tracking moving objects requires a small

amount of computation, so it is useful as a pre-processing stage of pedestrian detection.

Region selection has two types, depending on a loose or tight bounding of the region.

Sparse optical flow monitors movement of feature points in the video stream. A re-

gion around the feature points of interest can be selected with wide margin so that it

can cover more objects or observe the whole bodies of pedestrians; only parts of the

human body can be selected as feature points for optical flow, which may degrade the

detection performance. In contrast, a tight bound of the region is obtained with a nar-

row margin over a set of feature points. The HOG feature for pedestrian detection has

a vector representation, and it needs the whole size of HOG feature vectors for better

detection performance. Thus, a loose bounding box is appropriate to cover the pedes-

trian appearances. There may be multiple objects in the region, and sliding a regular

type of window frame may be useful to detect the target object.

A deep learning model, for example, YOLOv5 model consists of both object localiza-

tion and classification function. It automatically processes where objects are and which

are classified, and thus a wide canvas image can be helpful to detect pedestrians, al-

though a larger size of input image needs more computing time for neural networks. A

loose bound of region selection would be helpful to increase the detection performance

for the model.
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Suggested model, the SPD network is specialized in detecting a target object with a

fixed size of window frame, assuming a pedestrian is fitted to the window. The net-

work itself can detect pedestrians even with parts of human body if the training dataset

includes such images. Thus, a tight bound of the region is sufficient to recognize an

object without searching for multiple objects. However, even a tight bound of region

may include multiple pedestrians moving together. Region partitioning process may be

required to make subdivision of region to detect each person. Each sub-region is given

to the SPD network to check if it includes a pedestrian. The HOG+SVM method can

also use the region partitioning method in a similar manner.

5.1.3 Pedestrian detection models

The region selection method crops the ROI from the moving time window tracker

based on sparse optical flow. Then, the region is given to the object classification

model. Using the whole image as an input of the learning model brings a high compu-

tational burden.

In this paper, I test the histogram of gradient (HOG) features and the support vector ma-

chine (SVM) classification as a typical machine learning model. For the HOG+SVM

classification model, the whole canvas image is scanned with a fixed size of window

frame. The model tests if each window frame has the HOG feature for a target object.

The SVM determines the classification. The above region selection with optical flow

can be applied to the HOG-based approach. A region for moving objects in an image

is cropped with wide margin, and then the window sliding can be applied similarly

within the region. A larger size of window frame has more detailed information, but

it needs more computing time to process. There is a trade-off between the accuracy

performance and the computing time. Thus, an appropriate size of window frame is

required for the application purpose.

For deep learning models, it can also consider the two-phase approach, region selection

with optical flow and object classification. The OF+YOLOv5 method applies the state-

of-the-art deep learning model, YOLOv5, to the ROI extracted from optical flow. There

are small-sized YOLOv5 models, YOLOv5s and YOLOv5n for small and nano sizes,

respectively, that I test in the paper. They are categorized according to the number of

layers and filters of model structure. The YOLOv5s and YOLOv5n models consist of

29 layers, but have 7.2M and 1.9M parameters, respectively. The difference between

the models is the number of filters in the layers, with YOLOv5s having twice as many
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Figure 5.4: Example of region partitioning

filters as YOLOv5n. Later, it will be compared for the performances of deep learning

models with / without region selection. The detection performance and computing time

vary depending on size of input image as well as what learning models are used.

5.1.4 Region partitioning

Sparse optical flow has an advantage of requiring a small amount of computation, but

the motion vector extraction is vulnerable to the background image and large distance

movement. Also, the region selected from optical flows may not completely reflect the

original shape of a moving object. If multiple objects move together nearby, various

optical flows may occur, resulting in an ROI including multiple objects at once.

From this, only a part of the human body may be included in the ROI, or an ROI may

have many pedestrians. Distortion may occur in the process of converting this ROI

into the input size of the model. I wish to verify the classification performance and

robustness for distorted images or part images. The CNN models can be expected to

better capture features with convolution filters by learning distortion images or part

images of objects.

To divide the ROI obtained with the optical flow into sub-regions, I propose a subdi-

vision method according to the aspect ratio of the ROI as shown in Figure 5.4. Sub-

division process involves diving up an ROI into two or more parts, putting them as

separate, standalone sub-regions. Each sub-region is resized and tested with the pedes-

trian detection model to see if it can be classified as a pedestrian.

A region for moving objects is checked if it can be divided in terms of the aspect
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ratio. The aspect ration is the ratio of width to height of a region. Figure 5.4 shows an

example of region partitioning. The threshold is determined by examining the average

of aspect ratios of the ROI according to the number of correctly classified objects.

The algorithm roughly estimates the number of pedestrians with the aspect ratio over

a region selected from the optical flow, that is, how many sub-regions are available

to assign each for a pedestrian. Each partition of the ROI becomes an input to the

detection network to perform classification, and the number of pedestrians increases if

each partition has a successful pedestrian detection. The true positive (TP) score will

be increased for a bounding box region.

Without looking at the ground truth label, I do not know how many objects exist within

the ROI. Therefore, when performing performance evaluation, the TP evaluated for re-

call performance is increased by one for each sub-region ROI with a detection success.

In the experiment, I will check how well the classification model detects individual

objects. If no object is detected even after applying the region-partitioning method, the

original region before partitioning should be checked for detection.

5.2 Experimental environment

5.2.1 Dataset

To learn CNN model, the customized dataset is collected. Individual or multiple per-

son objects are cropped from the COCO2017 dataset which includes various forms of

objects, even distorted images (Lin et al., 2014; Chen et al., 2015). A total number of

person images are 252,309 and the number of non-person images are 529,336. To vali-

date the trained CNN model, I use 10,621 person-object images and 23,645 non-person

images. Non-person objects include various object classes and partial backgrounds.

Then the trained CNN model is applied to detect pedestrian for the PETS2009 video

dataset. The video resolution is 768 ⇥ 576 pixels, and the number of frames is 794.

This dataset includes many pedestrians walking with fast or slow speed on the road in

an arbitrary direction. Similarly, machine learning models with HOG features use the

same image set for training and testing.
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5.2.2 HOG-based approach and deep learning models

The pedestrian detection using the HOG features of the input image and the SVM

classification is a commonly used algorithm. Gradient features of image and their lo-

cal histogram form HOG features. The orientation directions are measured in a sam-

ple patch of images, and their distribution can be a feature to characterize an object

or pedestrian. The SVM classifier learns this HOG feature with the training set. The

HOG+SVM model, a combinational model with the HOG feature and the SVM de-

cider will be tested as a machine learning model for comparison. The model tests only

a fixed size of window frame for HOG features and so the test window should be

slid repeatedly over the whole canvas image to find its matched object. Generally, the

method is vulnerable to the size and distortion of target objects to be detected. To solve

this problem, there is an approach with multi-scale HOG feature using varying scales

in an image pyramid (Li et al., 2019).

A well-known deep learning neural network model, You Only Look Once (YOLO), is

often used for object detection. There are variations of the model, YOLO, YOLOv2,

YOLOv3, YOLOv4 and YOLOv5, and each has its own characteristics for application.

Prior to the YOLO model, R-CNNs split the image into several sections and the ana-

lyzed the image using a CNN model. Therefore, even if object detection was performed

on one image, it was like analyzing several images. However, YOLO has a powerful

property of viewing images only once as an integration of image features, which allows

detecting objects in real time. Its contextual understanding of the object class is higher

than that of other models, showing low false-positive rate. Also, it shows an effective

learning of generalized object class, allowing to see where objects are and what objects

are in a bounding box. To prevent overfitting, the number of learning epochs stops at

the number of iterations at which the validation loss is not significantly reduced. How-

ever, the YOLO model has a relatively low accuracy for small objects. As such, further

improvements are needed to increase the accuracy as well as reduce the computing

time.

5.3 Experimental results

The approach suggested in this paper for pedestrian detection consists of two stages:

one is to select regions over moving objects found with optical flow, and the other

is to apply the classification model to a given size of window frame. I suggest an
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Table 5.1: Comparison of YOLOv5 models with various input sizes; YOLOv5s and

YOLOv5n indicate small-sized and nano-sized models of YOLOv5, respectively

Model YOLOv5s

Input size 64x64 96x96 128x128 160x160 192x192 256x256 320x320 640x640

Recall 0.036 0.258 0.529 0.601 0.652 0.794 0.837 0.912

Precision 1.000 0.987 0.987 0.987 0.983 0.967 0.948 0.941

F-score 0.070 0.409 0.689 0.747 0.784 0.872 0.889 0.926

FPS 27.916 24.179 22.640 19.429 18.278 14.716 11.899 4.970

Model YOLOv5n

Input size 64x64 96x96 128x128 160x160 192x192 256x256 320x320 640x640

Recall 0.002 0.068 0.262 0.394 0.509 0.691 0.797 0.883

Precision 1.000 0.995 0.999 0.990 0.986 0.980 0.975 0.943

F-score 0.004 0.127 0.415 0.564 0.671 0.810 0.877 0.912

FPS 31.048 28.969 27.680 24.099 21.987 18.305 15.383 6.450

SPD model consisting of small-sized CNNs, and it is compared with the conventional

pedestrian detection models, the HOG+SVM model and a variation of the YOLOv5

model. The two models can also have similar two-stage process of region selection

and classification, and they will be compared with the original detection methods.

5.3.1 Deep learning model

I tested a well-known deep learning method, YOLOv5 for pedestrian detection. Accu-

racy and computing time performances greatly depend on the input size. Performance

evaluation uses the same pedestrian dataset as the dataset used in all experimental

parts. Table 5.1 shows the results with varying input sizes. In the YOLOv5 model

structure, there are depth multiple parameters that control the number of layers and

width multiple parameters that control the number of nodes per layer. Compared to

the medium-sized model of YOLOv5m, which has 41 layers, 21.2M parameters and

49.0B flops, the small-sized model has 29 layers, 7.2M parameters and 16.5B flops,

and the nano-sized model has 29 layers, 1.9M parameters and 4.5B flops. When the

YOLOv5m model is tested with an input size of 640x640 pixel images, the recall per-

formance is 0.924, precision is 0.925, F-score is 0.924, and frames per second (FPS)

is 2.980. For an input size of 320x320 pixel images, recall is 0.877, precision is 0.921,

F-score is 0.898, and FPS is 8.617. To improve the computational cost, YOLOv5s and

YOLOv5n models were used with more detailed tests – see Table 5.1.

99



Chapter 5. Pedestrian detection based on convolutional neural network model

Table 5.2: Comparison of OF+YOLOv5 models with various input sizes

Model OF+YOLOv5s

Input size 64x64 96x96 128x128 160x160 192x192 256x256 320x320 640x640

Recall 0.597 0.789 0.854 0.887 0.904 0.919 0.924 0.893

Precision 0.945 0.947 0.941 0.938 0.934 0.942 0.940 0.949

F-score 0.732 0.861 0.895 0.912 0.919 0.930 0.932 0.920

FPS 17.501 13.485 11.955 9.073 8.231 6.232 4.698 1.705

Model OF+YOLOv5n

Input size 64x64 96x96 128x128 160x160 192x192 256x256 320x320 640x640

Recall 0.506 0.735 0.823 0.861 0.888 0.895 0.898 0.879

Precision 0.937 0.944 0.946 0.946 0.946 0.946 0.946 0.956

F-score 0.657 0.827 0.881 0.901 0.916 0.920 0.921 0.916

FPS 22.129 18.758 15.710 12.837 10.798 8.781 6.629 2.301

The YOLOv5s model (i.e., the YOLOv5 model with a larger number of parameters

in the network) shows better accuracy and lower computing speed than the YOLOv5n

model. At least the input size of 320x320 is required for good detection performance.

The input size determines the number of nodes of the input layer in the deep learn-

ing model structure. As the input size decreases, the feature information of an image

becomes lost, affecting the performance of object detection. In Table 5.1, the smaller

the input size parameter, the lower the detection rate; however, the computing time de-

pends on the number of parameters in the network, leading to faster processing speed.

The YOLOv5 model described above uses the entire image as input data. The lower

the dimensions of the input data, the lower the recall performance, since small-sized

images tend to lose the feature information for pedestrian. Region selection based on

sparse optical flow was tested to see if cropping the ROI has a positive effect on the

deep learning model. This combinational model, the optical flow plus deep learning,

called OF+YOLOv5, takes the region selection first and then applies the YOLOv5

model to a loose bound of region with wide margin. The method was tested with vary-

ing input sizes. Interestingly, Table 5.2 shows that the model produces a high recall

performance, of 0.823 with 15.71 FPS even for an input size of 128x128 pixel images.

In Table 5.2, a major change compared to the previous experiments (in Table 5.1) is

that better performance is observed for a low resolution of images, but with increased

computing time.

From the experimental results, I argue that the region selection process is very effective
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Table 5.3: SPD model results without region partitioning

Model Layers Filters(3x3) Recall Precision F-score FPS Params(x10,000)

SPD 1 32
1

32 0.57 0.94 0.71 17.0 1678

SPD 1 64 64 0.58 0.94 0.72 11.2 3356

SPD 2 32
2

32 0.59 0.94 0.73 26.9 420

SPD 2 64 64 0.61 0.94 0.74 21.6 843

SPD 3 32
3

32 0.58 0.94 0.72 31.1 107

SPD 3 64 64 0.59 0.95 0.72 27.7 217

SPD 4 32
4

32 0.57 0.94 0.71 33.1 29

SPD 4 64 64 0.60 0.94 0.73 23.6 64

SPD 5 32
5

32 0.58 0.94 0.71 31.9 10

SPD 5 64 64 0.58 0.94 0.72 23.9 28

SPD 6 32
6

32 0.58 0.94 0.71 32.1 6

SPD 6 64 64 0.58 0.94 0.71 23.5 22

for pedestrian detection. The reason for the increased computational cost is that the

YOLOv5 network model was applied repeatedly for all the ROIs. Thus, it needs further

effort to organize the classification network efficiently. In this paper, I suggest an SPD

network with a small number of layers to the ROI after region selection. The object

localization is obtained from the region selection and the CNN structure is built only

for object classification, while the YOLOv5 network achieves object localization and

object classification simultaneously. The suggested SPD network is customized for the

application purpose. In the structure, a fixed (relatively small) size of window frame

is prepared for the target object image and no window sliding is needed to search for

target objects. Thus, the total computing time can be reduced while maintaining the

detection accuracy.

5.3.2 SPD network model

Compared to the YOLOv5 model, the CNN model that performs only classification

function, can consist of multiple layers of convolutional filter layers to extract image

features and FC layers to classify a given image. The YOLOv5 model simultaneously

performs object localization and classification while outputting the location and size

of target objects, which can be considered a one-stage detection model. In contrast, the
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SPD model tracks the location of moving objects from the optical flow, selects the ROI,

and classifies the region whether it includes a pedestrian. Since I do not know how

many people are included in the ROI where moving objects are available, I initially

evaluated the recall performance by considering the region as an instance of a single

pedestrian, regardless of how many people are present, if it is classified as pedestrian.

The effect of layer size in the network for the SPD model is investigated. Table 5.3

shows the result of performance evaluation with various models according to the num-

ber of CNN layers and the number of convolution filters in a layer. The overall detec-

tion performances are similar, but FPS performances differ depending on the number of

layers and the number of parameters of the model. As the number of layers increases,

the number of features represented by the CNN layer increases, and the number of

weight parameters of the network decreases. Use of three CNN layers shows efficient

computational speed performance, and as the number of 3x3 filters per layer increases,

the computational speed decreases further, with 32 filters being the appropriate num-

ber. In the SPD model, regions including multiple individuals reduce classification

performance, and the region with only one person is classified with a high probability.

Therefore, if the ROI is partitioned so that each object in a region including multiple

people is separately classified, the performance will be further improved, and the de-

tection rate and accuracy performances for each individual object will vary from model

to model.

Table 5.4 shows the performance detection results of various SPD models with re-

gion partitioning. Compared to the results of the Table 5.3 experiment without region

partitioning, the recall performance was significantly improved and the precision and

FPS performances were slightly reduced. Though precision performance was a little

decreased, the recall performance was greatly improved, and the overall F-score de-

tection performance was improved. If the flaw of the sparse optical flow is improved

or other pre-processing techniques are studied, the detection performance through the

SPD model will be further improved. From Table 5.3, the SPD 3 32 model with three

layers and 32 filters can be chosen as an appropriate model for application, exhibiting

excellent detection performance and efficient FPS performance.

Applying the object detection model to the ROI has a benefit in terms of computation

time. If I zoom the cropped area and test the region with the detection model, it will

be able to capture the feature better. Resizing the region into a fixed size of window is

effective in that the machine learning detection model learns the features of an object
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Table 5.4: SPD model results with region partitioning

Model Layers Filters(3x3) Recall Precision F-score FPS Params(x10,000)

SPD 1 32
1

32 0.71 0.81 0.76 12.6 1678

SPD 1 64 64 0.72 0.80 0.76 7.8 3356

SPD 2 32
2

32 0.70 0.83 0.76 23.8 420

SPD 2 64 64 0.72 0.87 0.79 18.1 843

SPD 3 32
3

32 0.71 0.88 0.79 28.2 107

SPD 3 64 64 0.71 0.89 0.79 24.3 217

SPD 4 32
4

32 0.71 0.85 0.77 29.3 29

SPD 4 64 64 0.72 0.84 0.78 19.9 64

SPD 5 32
5

32 0.72 0.83 0.77 29.5 10

SPD 5 64 64 0.71 0.88 0.79 19.8 28

SPD 6 32
6

32 0.71 0.83 0.77 29.6 6

SPD 6 64 64 0.72 0.85 0.78 19.2 22

with a specific size of filter or kernel.

The HOG+SVM model has the learned HOG feature for pedestrian detection and tries

to match the HOG feature with the SVM classifier. It basically slides a window frame

into the whole image with a given stride length. The SVM classifier detects objects

while sliding a window area that matches the input dimension of the HOG vector.

When a window slides in an image area and detects an object, it is possible to adjust

the parameter depending on the distance it slides and how it performs the classification

function. The F-score is an average of recall and precision, and if the precision value

decreases, the F-score value may decrease even if the recall value is high. It is observed

that for a small stride in the window sliding method, the detection rate becomes higher

but the computing time lengthens due to frequent detection attempts. The detection

performance significantly degrades for a large stride, since the SVM classifier often

fails to find objects matched with the target HOG feature vector. The appropriate stride

length should be chosen for the HOG+SVM method. Region selection can be applied

to the HOG+SVM model instead of sliding a window, in which case the model needs

resizing of the ROI to the SVM input dimensions.

By analyzing the number of objects in the area extracted from the optical flow, I set
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Table 5.5: Changes of applying region partitioning method according to aspect ratio

(HOG+SVM classifier).

Classifier

method

Labels

in ROI

Aspect

ratio

No. of

ROI

No. of

successes

/failures

Labels detection test

0 1 2 3 4 5 6

HOG

+SVM

(No sep)

0 0.85(±0.27) 407
119 119 - - - - - -

288 288 - - - - - -

1 0.66(±0.19) 2038
850 311 539 - - - - -

1188 555 633 - - - - -

2 0.74(±0.18) 699
65 22 28 15 - - - -

634 190 320 124 - - - -

3 0.78(±0.27) 141
9 2 3 4 0 - - -

132 26 60 34 12 - - -

4 0.90(±0.23) 35
4 1 2 1 0 0 - -

31 2 14 12 3 0 - -

5 1.15(±0.27) 2
0 0 0 0 0 0 0 -

2 0 0 1 1 0 0 -

6 0.89(±0.04) 2
0 0 0 0 0 0 0 0

2 0 2 0 0 0 0 0

HOG

+SVM

(Sep)

0 0.41(±0.33) 1364
119 119 - - - - - -

1245 1245 - - - - - -

1 0.45(±0.24) 3377
873 318 555 - - - - -

2504 1135 1369 - - - - -

2 0.48(±0.25) 488
42 15 16 11 - - - -

446 143 221 82 - - - -

3 0.53(±0.20) 72
5 0 2 3 0 - - -

67 18 26 17 6 - - -

4 0.53(±0.09) 3
0 0 0 0 0 0 - -

3 0 1 2 0 0 - -

5 0 0
0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

6 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

the threshold according to the aspect ratio, and then divide the ROI. In general, as

the number of individuals in the ROI increased, the average aspect ratio of the ROI

increased according to the number of individuals. For example, if ROI containing only
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one object has an aspect ratio of 0.66, set a threshold of 0.66, and then no separation

is attempted if the ROI has an aspect ratio of 0.66 or less. If it exceeds 0.66 but is less

than 0.74, separate the ROI into two according to the ratio.

Table 5.5 shows the result of the HOG+SVM model without and with region parti-

tioning. Term of labels in ROI indicates the number of ground truth labels in each

moving object ROI. The numbers of label detection tests from zero to six represent

the detected number of the ground truth labels in the ROI. Sep indicates region par-

titioning. The table above shows how successful it could be, if labels included in the

ROI are individually well detected, compared to the ROI where two or more individu-

als were failed to detect. In the table below, it appears that the number of individually

divided objects has increased, but the number of objects successfully detected has not

increased significantly. Since the number of successful detections of ROI containing

one person increased from 539 to 555, the detection performance is not significantly

improved. The number of successful detections of ROI where objects do not actu-

ally exist indicates false alarms, but since this does not increase, the accuracy perfor-

mance has not changed significantly. From this, it may be seen that the HOG+SVM

model does not effectively detect individual objects even in each partition of ROI. The

HOG+SVM model mainly adopts a method of cropping the image area from the slid-

ing window at several-pixel intervals and inputting it to the model. Experiments show

that the HOG+SVM model is vulnerable to distortion of the image feature, when the

resolution of the input image is fitted.

In previous experiments, the SPD model was expected to improve performance further

when applied in each partition of the ROI. Table 5.6 shows the experimental results

when the classification model is applied as a lightweight SPD model composed of a

few CNN layers. In general, the probability of detection failure increases as the ROI

includes a large number of individuals. According to the above table before separa-

tion, the detection ratio of ROI with two objects is 649:42, 96:28 for three objects,

24:9 for four objects, and for five or more objects, only one detected. Even detecting

multiple people fails, the SPD model shows high detection performance when detect-

ing the corresponding objects individually. From this, the detection performance will

be improved by region partitioning to divide the ROI containing multiple people into

the areas containing individual objects.

Table 5.6 shows that the number of successful detections of ROI containing one per-

son increased from 1909 to 3105. From this, the detection performance (recall) will
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Table 5.6: Changes of applying region partitioning method according to aspect ratio

(SPD classifier).

Classifier

method

Labels

in ROI

Aspect

ratio

No. of

ROI

No. of

successes

/failures

Labels detection test

0 1 2 3 4 5 6

SPD

(No sep)

0 0.85(±0.27) 407
301 301 - - - - - -

106 106 - - - - - -

1 0.66(±0.19) 2038
1911 2 1909 - - - - -

127 3 124 - - - - -

2 0.74(±0.18) 699
656 0 7 649 - - - -

43 0 1 42 - - - -

3 0.78(±0.27) 141
108 0 0 12 96 - - -

33 0 0 5 28 - - -

4 0.90(±0.23) 35
26 0 0 0 2 24 - -

9 0 0 0 0 9 - -

5 1.15(±0.27) 2
1 0 0 0 0 0 1 -

1 0 0 0 0 0 1 -

6 0.89(±0.04) 2
0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 2

SPD

(Sep)

0 0.41(±0.33) 1364
718 718 - - - - - -

646 646 - - - - - -

1 0.45(±0.24) 3377
3115 10 3105 - - - - -

262 8 254 - - - - -

2 0.48(±0.25) 488
476 0 12 464 - - - -

12 0 0 12 - - - -

3 0.53(±0.20) 72
67 0 0 6 61 - - -

5 0 0 0 5 - - -

4 0.53(±0.09) 3
3 0 0 0 0 3 - -

0 0 0 0 0 0 - -

5 0 0
0 0 0 0 0 0 0 -

0 0 0 0 0 0 0 -

6 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

increase significantly, and the accuracy performance (precision) will decrease slightly

by increasing the number of detection successes from 301 to 718. However, as the

number of failed detections of ROI without objects increases from 106 to 646, it seems
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to distinguish the false alarming region very well. The number of cases that could im-

prove recall performance increased from 124 to 254 when number of labels ROI was

one. These cases are phenomena that appear from the vulnerability of sparse optical

flow. When a part of a human object, such as an arm or leg, moves, a part where a mo-

tion vector occurs greatly appears. Accordingly, a part of the human body is frequently

captured in the ROI. In addition, an inaccuracy occurs in which one object is divided

into two due to an incomplete partition of ROI. The CNN-based neural network model

SPD also learns images containing parts of the body and several people, which is in-

sufficient than when entering the entire human body, but shows good robustness. In

the experimental results, even when a part of one object is classified, it shows strong

detection performance.

5.3.3 Comparison of detection performance

I tested the learning models for pedestrian detection: HOG+SVM, HOG Multiscale,

YOLOv5n of 320x320 and OF+HOG+SVM (loose bound of region selection), OF+YO

LOv5n 128 (loose bound) and OF+SPD 3 32 (tight bound) models. Figure 5.5 shows

the comparison of their performances. Performance results are compared by applying

the same performance evaluation method, which treats ROI with multiple objects as a

single object detection success for all models. For the proposed model, I set the opti-

mal parameters obtained through the experimental results. For the dataset PETS2009,

each of conventional models also used its optimized parameters for comparison. The

HOG+SVM model is a classification model of combining the HOG features and the

SVM classifier. The HOG+SVM model applies the sliding window method to the en-

tire image resolution of the frame, and inputs and classifies the area corresponding to

each window into the model. The window size is set according to the dimensions of the

learned SVM classifier. The HOG-Multiscale method uses varying scales in an image

pyramid (Li et al., 2019).

The YOLOv5n 320 model uses the entire image as input data, and unlike the exist-

ing sliding window method, it is a one-stage detector that performs both object lo-

calization and classification. The latest deep learning model uses an anchor box to

learn the location and size of the object and extracts the location and classification

results from the extracted image feature. The OF+HOG+SVM model has the sug-

gested region selection, tracks moving objects with optical flow, and classifies the area

of moving objects with a sliding window of HOG feature and SVM classifier. The
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(a) (b)

(c) (d)

Figure 5.5: Comparison of detection performances (a) recall performance results (b)

F-score (c) FPS

OF+YOLOv5n 128 method inputs a moving object region extracted from sparse op-

tical flow to the model, producing robust detection performance even for small image

input sizes. The OF+SPD 3 32 model with region partitioning is compared with other

learning models. This method replaces object localization with region selection (i.e.,

tracking moving objects with sparse optical flow) and significantly reduces computa-

tion time by applying small-sized CNN model.

Figure 5.5 shows that detection performance recall and F-score values are increas-

ing in the order of HOG+SVM, HOG multiscale, YOLOv5 320, OF+HOG+SVM
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(loose bound of region), OF+YOLOv5n 128 models (loose bound of region), and

OF+SPD 3 32 (tight bound of region). On the other hand, it is confirmed that, in

general, as the detection performance increases, the FPS value gradually decreases.

Other conventional models perform both the location and classification of the object

at the same time (especially in the process of locating the object), processing the en-

tire image, which results in poor processing speed performance. The OF+HOG+SVM

model can quickly process to find the location of moving objects through the sparse

optical flow, and although it is a simple function, it performs the function of distin-

guishing whether the moving object is human through HOG feature and learned SVM

classifier. The OF+YOLOv5 128 model shows the best detection performance, but the

worst in terms of FPS. On the other hand, the OF+SPD 3 32 (tight bound) model

shows the lowest computational speed, and the detection performance is also compa-

rable to the OF+HOG+SVM model. Based on the results, it can be selected to the

OF+YOLOv5 128 model if I increase the detection performance in equipment with

sufficient computational speed, or the OF+SPD 3 32 model for compliant detection

performance in low-cost equipment with low computational speed.

I compared the performances of various models with the laptop computer and portable

embedded board. Table 5.7 shows the results with the HOG Multiscale, HOG+SVM,

OF+HOG+SVM (loose bound), OF+HOG+SVM (tight bound), YOLOv5 320, OF+YO

LOv5n 128 (loose bound), and OF+SPD 3 32 (tight bound) models. The laptop com-

puter has a 2.3 GHz 8-core Intel CPU and the Raspberry Pi 4 Model B has a 1.5 GHz

4-core ARM CPU. Both models perform computational processing only on the CPU,

and the Raspberry Pi is a low-cost and low-performance computing device. The results

of FPS experiments in the Raspberry Pi environment show a feasibility for real-world

applications useful in industrial fields. Depending on the environment of the two com-

putation devices, a compatibility problem between the supported operation functions

and the framework may occur. Accordingly, there is a difference in computational

speed according to the devices between different framework-based models, Pytorch

and Keras of the Tensorflow backend. The YOLOv5n model in the Pytorch environ-

ment operates in the capability of the deep learning network library to work in C++

languages and is well-optimized. The proposed SPD model operates in the Keras of the

Tensorflow backend environment, and the computational processing method operating

in the ARM CPU is less optimized. The computing speed index is mainly divided into

optical flow-based ROI extraction time (OF), object classification time (Class.), and
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Table 5.7: Performance comparison of various models on laptop Intel CPU and Rasp-

berry Pi 4B; NA means Not Applicable, OF in FPS category indicates the region-

selection processing time to obtain ROI, Class indicates classifying regions of moving

objects, and Total means a total processing time for image frames.

Model Recall Precision F-score

FPS

Intel CPU Raspberry Pi 4B

OF Class. Total OF Class. Total

HOG Multiscale 0.61 0.97 0.75 NA 20.3 20.3 NA 2.6 2.6

HOG+SVM 0.57 0.98 0.72 NA 25.3 25.3 NA 6.2 6.2

OF+HOG+SVM

(loose bound)
0.71 0.95 0.81 37.7 72.3 24.8 16.1 9.8 6.1

OF+HOG+SVM

(tight bound)
0.23 0.94 0.36 36.8 652.2 35.4 16.1 113.3 14.1

YOLOv5n 320 0.79 0.97 0.87 NA 15.0 15.0 NA 3.5 3.5

OF+YOLOv5n 128 0.82 0.94 0.88 36.0 24.6 14.6 15.7 5.4 4.6

OF+SPD 3 32

(tight bound)
0.71 0.88 0.79 38.5 105.6 28.2 16.4 9.0 5.8

overall computing speed (Total), in Table 5.7. The corresponding index is expressed

in FPS, and if the reciprocal is taken, it can be expressed as the processing time per

frame.

Table 5.7 shows the difference in computational speed performance according to the

computational processing capabilities optimized in low-performance embedded de-

vices for each model. First, in the case of the HOG multiscale model provided by

OpenCV library, detection processing speed is significantly reduced in the ARM CPU

environment compared to the Intel CPU, from 20.3 to 2.6 FPS. The optical flow method

part, which is relatively simple but repeatedly performs arithmetic processing, does not

show a significant difference between the laptop environment and the Raspberry Pi en-

vironment, with 36 and 16 FPS, respectively. The machine learning model OF+HOG+S

VM (scaling+sliding Window) applies the sliding windows only to the region extracted

from optical flow and scaled, not the entire image such as HOG+SVM model, indicat-
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ing that the computation speed has increased considerably.

The OF+HOG+SVM model (with a tight bound of region) follows the same procedure

as the OF+SPD model, whose cropped region is resized into a 128x64 pixel image.

As seen in Table 5.7, if the HOG-based approach has no window sliding to search for

objects and its classifier has a single run of test on the selected region (a tight bound of

region selection), then its performance is drastically reduced, though it may have fast

computing time. If a restricted zone of region is not fitted well, it easily loses target

pedestrians and the HOG feature is not effective within the selected region. The perfor-

mance evaluation results of the YOLOv5n 320 and OF+YOLOv5n 128 models show

that the backend framework of the corresponding detection model is well optimized

for the ARM CPU, thus reducing the computing time. However, the OF+SPD 3 32

model with CNN layer has a total FPS of 5.8, indicating that its processing is not as ef-

ficiently organized for the Raspberry board as an ARM CPU. It is observed that better

computing speed is available on the Intel CPU board.

5.4 Summary of Chapter 5

Detecting pedestrians is one of the challenging tasks in the video surveillance sys-

tem, and such surveillance is useful in improving safety for automotive applications

and traffic flow measurements. I introduce a small-sized pedestrian detection network,

called SPD network, which significantly improves the computing time to detect pedes-

trians with small-sized convolutional neural networks (CNNs). This approach follows

a motion-based detection approach for pedestrian detection. Initially moving object

tracking with optical flow is applied to the video stream, the region of interest is se-

lected and then a classification is performed on the region to recognize pedestrians.

The region of interest is cropped for a sequence of image frames and then resized to

a regular size of window for testing the neural networks. In addition, pedestrian de-

tection performance is improved with region partitioning for a group of pedestrians.

With the experimental results, region selection based on optical flow and the object de-

tection model show better performance in pedestrian detection than the conventional

algorithms with HOG method or deep neural networks. Also, the approach improves

the computing time to a large extent, compared to the classical CNN model, YOLOv5.

It provides a possibility that the approach can be applied in a low-cost portable embed-

ded device.
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Conclusions

In this dissertation, studies of integrative approach to pedestrian detection based on

sparse optical flow and CNN model have been presented. The study of pedestrian de-

tection has been improved for the safety of workers in industrial areas and for monitor-

ing traffic flow in surveillance systems. It is focused on reducing computational cost

for application on devices operated using CPUs.

The work has two main and one supplementary streams: moving-object tracking, pedes-

trian detection, and data selection. The moving-object tracking and pedestrian detec-

tion portions concentrate on reducing computational cost and enhancing detection per-

formance based on sparse optical flow and CNN model. The data selection portion

concentrates on investigating the influence graph and coverage effects on the custom

datasets.

Chapter 3 provides the detailed method of moving time window detector and memo-

rized estimator functions. Chapter 4 suggests the framework to investigate the relation-

ship, influence, and coverage area of training datasets. Chapter 5 describes the system

that integrates the moving time window detector and simple CNN-based SPD model to

detect pedestrians in a surveillance system. The experiments were conducted on input

video data obtained from surveillance camera systems.

The detailed conclusions are described in the following subsections.
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6.1 Moving object tracking based on sparse optical flow

In Chapter 3, the approach to moving object detection and tracking is proposed. One

of the major attributes is to improve the accuracy performance and reduce the com-

putation time of responding to moving objects or moving pedestrians. The proposed

method is based on the sparse optical flow approach, that is, a coarse-grained optical

flow, but it includes the corner feature reset with a moving window. A sequence of

images effectively finds the flow of moving objects and thus the moving window of

image frames easily captures moving targets without wasting much time.

The moving time window detector improves the noise filtering and the detection rate,

by looking at a history of optical flows. In a hazardous environment, such as the con-

struction sector, there may be the risk of meeting many obstacles including walls and

trees, and various optical flow patterns are often observed, when pedestrians should

be detected. The memory-based target estimator plays the role of monitoring the tar-

gets or pedestrians without missing when the targets move around or stagger at some

positions. Even if a moving target is initially recognized, the target may move contin-

uously with occasional pause. With this estimator, the last position of a moving targets

is estimated and this improves the performance of detecting moving objects in a row.

I adapt this detection algorithm in the embedded board system, Raspberry Pi4, for real

application. The experimental results demonstrate that the suggested approach is effec-

tive for preserving the detection performance even with a low computing power of the

embedded device. According to the experimental results, the proposed method shows

similar or higher accuracy performance, compared to the conventional algorithms for

moving object detection using optical flows or vision processing algorithms: Lucas-

Kanade’s method and Farneback’s method in addition to HOG and Haar-like methods.

It also provides a more efficient computing time than dense optical flows and vision

processing algorithms. The approach works well even for distorted views from a top-

viewed camera and also for blurred images or noisy image frames, and thus it can be

robustly applied to various environments.

6.2 Data selection for deep learning model

Many deep learning models have been applied to recognize objects or pedestrians.

Fisheye cameras have a wide viewing angle close to 180�, and their image distortions
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make it difficult to transfer a deep learning model of object detection to a new fish-

eye camera environment. Adaptation due to the geometric distortions and perspective

changes should be considered. In addition, the environmental conditions affects the

performance of deep-learning neural networks at object detection. I collected images

from six fisheye cameras mounted on a hydrogen-powered bus and also images from

another type of fisheye camera on an excavator vehicle under various environmental

conditions and varying camera positions. The collection of the custom image datasets

was classified into six subjects depending on the environmental factors, whether their

photos are captured indoors or outdoors, in daylight or at night, or at low angle or high

angle of the camera position. The bus and excavator vehicles are supposed to use deep

learning models to monitor nearby pedestrians or objects to guarantee safe driving.

I suggested a cross-test approach to analyze the relationship among a collection of sub-

jects or image datasets. The cross test is used to build up a deep learning model for one

subject and then evaluate the model on the test data for a target subject. Based on the

result, I represent the graph relationship between pairs of subjects, and the edge from

a source subject to a target subject encodes the information of how much the perfor-

mance of a target subject is improved by the addition of a source subject. I train a neural

network model for the base set alone and another neural model for the source subject

plus the base set. The two models are tested on a target subject and the performances

are compared to derive the effect of a source subject on the target subject.

From the experimental results, I derived the influence graph among six subjects of the

custom image datasets obtained from fisheye cameras of vehicles, and the information

of positive or negative effect in the influence is useful to choose an appropriate training

subject to improve the validation performance of a target subject. Furthermore, inter-

relations among subjects can be inferred and analyzed. The approach can reduce the

cost of collecting the image data with of the appropriate environmental factors even

with fisheye cameras. When a negative aspect is observed, I can analyze its cause or

latent variables by drawing the shadow zone.
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6.3 Pedestrian detection based on convolutional neural

network model

Pedestrian detection is a main subject regarding video surveillance applications to im-

prove safety for automotive applications, CCTV monitoring systems and traffic man-

agement. To improve the accuracy performance, deep learning neural networks with

GPUs have become popular. However, they need a large amount of computation and

the learning models are rarely useful on a low-cost embedded board without a GPU.

In Chapter 5, I consider applications of pedestrian detection running in a portable PC

without a GPU and introduce an effective and efficient approach for pedestrian detec-

tion, which performs region selection based on optical flow and then applies CNNs to

a regular size of window region. It needs cropping and resizing operators after region

selection, and the operators operate with relatively low-cost computation. The optical

flow initially tracks moving objects in the video stream, and a collection of points with

high magnitude in optical flow forms an ROI. The selected region is cropped from

the image and resized into a minimum size of window needed to detect pedestrians

effectively.

The suggested approach, called the OF+SPD model, can select ROIs with optical flow

and apply small-sized neural networks of classifying objects in the regions. It can re-

duce the time and effort of testing the neural networks on every spot in an image. The

region selection as well as the SPD network need relatively small computing cost com-

pared to deep neural networks such as YOLOv5. Experimental results support that the

method has good detection performance with a short processing time. The YOLOv5

model with optical flow showed excellent detection performance, but requires high

computing time. The customized CNN model for the SPD network has a small num-

ber of layers (less than six layers), but keeps detection performance comparable to the

deep learning model.

The HOG+SVM method with region selection shows better detection performance

than that without region selection. The HOG-based approach has small computing

time, but it is much worse in the detection performance than the suggested OF+SPD

model or the OF+YOLOv5n model. The CNNs are highly effective in extracting fea-

tures for detecting pedestrians. In addition, their learning and adaptation is reasonably

applicable at new environments with distorted images or occluded images. Region se-

lection with optical flow is a crucial aspect of improving the performance and the com-
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puting time. The performance deterioration often occurs in the presence of small-sized

pedestrians. The region selection resizes the candidate regions to be fit into a regular

form of window. Compared to direct application of the YOLOv5n model, this process

improves the detection accuracy even for the OF+YOLOv5n model.

I propose a model with excellent detection performance or computational speed by

applying YOLOv5 or a small-sized CNN learning model to the moving object region

extracted with sparse optical flow. The OF+YOLOv5 model shows excellent detection

performance due to its complexity and large size, but requires long computation time.

To improve this drawback, a small-sized CNN network called SPD model is suggested.

A high computational speed of detection can be obtained while performing moving

object localization with sparse optical flow and keeping detection performance com-

pliant through SPD models composed of lightweight CNN layers. Furthermore, region

partitioning for a group of pedestrians appearing in an ROI improves performance of

pedestrian detection. Depending on the performance requirements, the accuracy, the

computing time or cost, users can choose appropriate models. The suggested approach

is an alternative for pedestrian detection with a low-cost embedded board.

6.4 Future works

The proposed optical flow object tracking algorithm has a limitation that the camera

must be fixed, and if there are many objects moving on the screen, the object may not

be captured individually. Future studies are proposed to improve the object tracking

algorithm through the optical flow that I proposed. To capture the moving object as in-

dividually as possible, the feature point area in which the optical flow is captured may

be further restricted by placing the center of gravity or weight of the feature points. Re-

garding camera ego-moving restrictions, unlike conventional background subtraction

or pixel differentiation, a study is required to select feature points that are distinguished

from background movements and have detected movement of objects based on feature

points.

The solution is presented to find and solve a region that is hard to grasp on various

datasets. There has been suggested no solution to reduce the generalization error re-

vealed by the cross-subject validation. In the future, Incremental learning could be one

alternative to improve the performance of object detection for a target subject. A proper

choice of source subject in sequence can help enhance the performance. By following
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the partial-order relations to influence a target subject, a source subject can be added

one-by-one for training a deep neural network model. It could be necessary to check

whether the constructing the learning data is sufficient to improve the performance of

the detection model in the desired environment by applying the proposed strategy to

other unsolved datasets in addition to the dataset prepared. Furthermore, research is

required on whether the model learning performance of proposed strategy can be im-

proved through a combination of three or more dataset relationships rather than two

combinations.

It is a developed algorithm to classify objects moving with object detection models in

the optical flow object tracking area. To improve detection performance, it is possible

to consider a study where vectors of a different dimension are used in the SVM model

classifying HOG features for each specific optical flow region. If research on individ-

ual optical flow box generation, previously considered in the object tracking section,

makes further progress, then the tracking area can be sized to fit the input vector dimen-

sion of the SVM classifier and it can be applied for a classification model to the area.

The advantage of this is that it is possible to reduce the computational requirement by

performing classification once for a given input area without the need for classifica-

tion while moving the detector window. The reason is that the location of the optical

flow box is determined by the location of the classified object, reducing the number of

operations performed on the object location by the detection models.

Based on the CNN feature extractor, it is possible to develop a deep learning model

that is effective for classification functions with less computational cost. By applying

developed deep learning or CNN-based detection models in an area extracted from

the optical flow method, one achieves a moving object detection model which is more

robust, faster, and with improved detection performance. Furthermore, developed sep-

aration of ROI to an individual object will improve the detection performance of the

proposed OF+SPD model. The detection performance of the proposed model could be

further improved if the region obtained from the sparse optical flow is more precisely

segmented.
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